An Introduction to the Dirac Operator in Riemannian Geometry

S. Montiel
Universidad de Granada

Varna, June 2007

Genealogy of the Dirac Operator

- 1913 É. Cartan Orthogonal Lie algebras
- 1927 W. Pauli Inner angular momentum (spin) of electrons
- 1928 P.A.M. Dirac Dirac operator and quantum-relativistic description of electrons
- 1930 H. Weyl Wave functions of neutrinos
- 1937 É. Cartan Insurmountables difficulties to talk about spinors on manifolds
- 1963 M. Atiyah and I. Singer Dirac operator on a spin Riemannian manifold

Genealogy of the Dirac Operator

- 1963 A. Lichnerowicz (maybe I. Singer in the last 50’s) Topological obstruction for positive scalar curvature on compact spin manifolds
- 1974 N. Hitchin The dimension of the space of harmonic spinors is a conformal invariant and existence of parallel spinors implies special holonomy
- 1980 M. Gromov and B. Lawson More topological obstructions for complete metrics with non-negative scalar curvature
- 1981 E. Witten An elemental spinorial proof of the Schoen and Yau positive mass theorem
- 1995 E. Witten Seiberg-Witten \Rightarrow Donaldson

The Wave Equation (1850-1905)

- Wave equation of Maxwell and Special Relativity theories

$$
\begin{aligned}
& O \subset \mathbb{R}^{3} \quad u: O \times \mathbb{R} \longrightarrow \mathbb{R} \quad \square u=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}+\Delta u=0 \\
& u(p, t)=\sum f(t) \phi(p) \quad f^{\prime \prime}+\lambda f=0 \quad \Delta \phi-\lambda \phi=0
\end{aligned}
$$

where $\Delta=-\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}-\frac{\partial^{2}}{\partial z^{2}}$ and c is the ratio between electrostatic and electrodynamic units of charge

- Second order in time and space coordinates
- Invariant under Lorentz transformations
$O(1,3)=\left\{A \in G L(4, \mathbb{R}) \mid A G A^{t}=G\right\}, \quad G=\operatorname{diag}(-1,1,1,1)$

The Schrödinger Equation (1926)

- Schrödinger equation of the non-relativistic Quantum Mechanics

$$
\begin{gathered}
O \subset \mathbb{R}^{3} \quad \psi: O \times \mathbb{R} \longrightarrow \mathbb{C} \quad-i \frac{\partial \psi}{\partial t}+\Delta \psi=0 \\
\psi(p, t)=\sum f(t) \phi(p) \quad f^{\prime}+i \lambda f=0 \quad \Delta \phi-\lambda \phi=0
\end{gathered}
$$

- Invariant under Galileo transformations

$$
\mathbb{R}^{3} \cdot O(3)=\left\{A \in G L(4, \mathbb{R}) \left\lvert\, A=\left(\begin{array}{cc}
1 & 0 \\
v & A
\end{array}\right)\right., v \in \mathbb{R}^{3}, A \in O(3)\right\}
$$

- First order in time and second order in space coordinates
- Complex values

The Classical Dirac Operator

- 1928 P.A.M. Dirac, 1930 H. Weyl

Look for an equation of first order in all the variables, like this

$$
\frac{i}{c} \frac{\partial \psi}{\partial t}+D \psi=0 \quad D \psi=\sum_{i=1}^{3} \gamma_{i} \frac{\partial \psi}{\partial x_{i}}
$$

whose iteration on solutions gives the wave equation. This holds iff

$$
D^{2}=\Delta \Longleftrightarrow \gamma_{i} \gamma_{j}+\gamma_{j} \gamma_{i}=-2 \delta_{i j}
$$

for $i, j=1,2,3$. For example, these Pauli matrices

$$
\gamma_{1}=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \gamma_{2}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \gamma_{3}=\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)
$$

The Classical Dirac Operator and Spinor Fields

- Other possible Pauli matrices $\gamma_{i}^{\prime}=P \gamma_{i} P^{-1}$ or $\gamma_{i}^{\prime}=-\gamma_{i}$.
- Two essentially different (chirality) Dirac-Weyl equations

$$
\pm \frac{i}{c} \frac{\partial \psi}{\partial t}+\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \frac{\partial \psi}{\partial x}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \frac{\partial \psi}{\partial y}+\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \frac{\partial \psi}{\partial z}=0
$$

- Spinor fields $\psi: O \times \mathbb{R} \longrightarrow \mathbb{C}^{2}$ expand into series

$$
\begin{gathered}
\psi(p, t)=\sum f(t) \phi(p) \quad f^{\prime}+i \lambda f=0 \\
D \phi=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \frac{\partial \phi}{\partial x}+\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \frac{\partial \phi}{\partial y}+\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \frac{\partial \phi}{\partial z}=-\lambda \phi
\end{gathered}
$$

The Classical Dirac Operator

- To define the Dirac operator in terms of any other orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ as

$$
D=\gamma\left(e_{1}\right) \nabla_{e_{1}}+\gamma\left(e_{2}\right) \nabla_{e_{2}}+\gamma\left(e_{3}\right) \nabla_{e_{3}}
$$

we need Pauli matrices for all directions $v \in \mathbb{R}^{3}$. Put
$\gamma(v)=\gamma\left(v_{1}, v_{2}, v_{3}\right)=v_{1} \gamma_{1}+v_{2} \gamma_{2}+v_{3} \gamma_{3}=\left(\begin{array}{cc}i v_{1} & v_{2}+i v_{3} \\ -v_{2}+i v_{3} & -i v_{1}\end{array}\right)$

- A Lie algebra isomorphism

$$
\gamma:\left(\mathbb{R}^{3}=\mathfrak{o}(3), \wedge\right) \rightarrow\left(\mathfrak{s u}(2), \frac{1}{2}[,]\right)
$$

- Clifford relations

$$
\gamma(u) \gamma(v)+\gamma(v) \gamma(u)=-2\langle u, v\rangle I_{2}, \quad \forall u, v \in \mathbb{R}^{3}
$$

What Are These Spinor Fields?

- For each $A \in S U(2)$ there is a unique real matrix $\rho(A) \in$ $M_{\mathbb{R}}(3)$ such that

$$
\gamma(\rho(A) v)=A \gamma(v) \bar{A}^{t} \quad \forall v \in \mathbb{R}^{3}
$$

- See that $\rho(A) \in S O(3)$ and the map $\rho: S U(2) \rightarrow S O(3)$ is a two-sheeted (universal) covering group homomorphism
- Surjective: given $R \in S O(3)$, put $R=s_{1} \circ s_{2}$ and prove that $A=\gamma\left(v_{1}\right) \gamma\left(v_{2}\right) \in S U(2)$ and that $\rho(A)=R$
- Kernel: if $A \in \operatorname{ker} \rho$ then A commutes with all Pauli matrices and so $A= \pm I_{2}$

What Are These Spinor Fields?

- Let $\phi: O \rightarrow \mathbb{C}^{2}$ be a spinor and $A \in S U(2)$. Consider the open set $O^{\prime}=\rho(A)^{t}(O)$ and define

$$
\begin{gathered}
\psi: O^{\prime} \rightarrow \mathbb{C}^{2}, \quad \psi(p)=\bar{A}^{t} \phi(\rho(A) p), \quad \forall p \in O^{\prime} \\
(D \psi)(p)=\sum_{i=1}^{3} \gamma\left(e_{i}\right)\left(\nabla_{e_{i}} \psi\right)(p)=\sum_{i=1}^{3} \gamma\left(e_{i}\right) \bar{A}^{t}\left(\nabla_{\rho(A) e_{i}} \phi\right)(\rho(A) p) \\
=\sum_{i=1}^{3} \bar{A}^{t} \gamma\left(\rho(A) e_{i}\right)\left(\nabla_{\rho(A) e_{i}} \phi\right)(\rho(A) p)=\bar{A}^{t}(D \phi)(\rho(A) p)
\end{gathered}
$$

and so $D \phi=\lambda \phi \Leftrightarrow D \psi=\lambda \psi$

- If spatial coordinates change through $R \in S O$ (3), then components of spinors change through $\rho^{-1}(R) \in S U(2)(?)$
- $\rho\left(\begin{array}{cc}e^{i \frac{\theta}{2}} & 0 \\ 0 & e^{-i \frac{\theta}{2}}\end{array}\right)=R_{\theta}$ is a rotation of angle θ around the x-axis

Speaking Bundle Language

- 1963 Atiyah and Singer
* $O \subset \mathbb{R}^{3}$ is a chart domain of an oriented Riemannian threemanifold M
* $\phi: O \rightarrow \mathbb{C}^{2}$ is the local expression of a section of a complex vector bundle ΣM with fiber \mathbb{C}^{2} associated to a virtual (?) principal bundle with structure group $S U(2)$
* Lift transition functions $f_{i j}: U_{i} \cap U_{j} \rightarrow S O$ (3) to maps $g_{i j}: U_{i} \cap U_{j} \rightarrow S U(2)$ and define

$$
h_{i j k}: U_{i} \cap U_{j} \cap U_{k} \rightarrow \mathbb{Z}_{2}=\{+1,-1\}
$$

according to $g_{i k}= \pm\left(g_{j k} g_{i j}\right)$. This h is a cocycle and defines the second Stiefel-Whitney class $w_{2}(M) \in H^{2}\left(M, \mathbb{Z}_{2}\right)$

Speaking Bundle Language

* $\sum M$ must have a Hermitian metric 〈, 〉 and a covariant derivative ∇ which parallelizes the metric
* A bundle map $\gamma: T M \rightarrow$ End $_{\mathbb{C}}(\Sigma M)$ with

$$
\gamma(u) \gamma(v)+\gamma(v) \gamma(u)=-2\langle u, v\rangle I_{2}
$$

compatible with both \langle,$\rangle and \nabla$ called a Clifford multiplication because it determines a complex representation of each Clifford algebra $\mathbb{C} \ell\left(T_{p} M\right)$ on the space $\Sigma_{p} M$

* In this frame, the Dirac operator is

$$
D \psi=\sum_{i=1}^{3} \gamma\left(e_{i}\right) \nabla_{e_{i}} \psi
$$

where e_{1}, e_{2}, e_{3} is an orthonormal basis of $T_{p} M$

An Introduction to the Dirac Operator in Riemannian Geometry

S. Montiel
Universidad de Granada

Varna, June 2007

Emergence Kit for Riemannian Geometry Notation

- Let M be a Riemannian manifold, \langle,$\rangle the metric and \nabla$ the Levi-Cività connection
- R will be the Riemannian curvature operator $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, \quad X, Y, Z \in \Gamma(T M)$ and also Riemannian curvature tensor of M, given by

$$
R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle, \quad X, Y, Z, W \in \Gamma(T M)
$$

- The single and double contractions of this four-covariant tensor

$$
\operatorname{Ric}(X, W)=\sum_{i=1}^{n} R\left(X, e_{i}, e_{i}, W\right) \quad S=\sum_{i, j=1}^{n} R\left(e_{i}, e_{j}, e_{j}, e_{i}\right)
$$

are the Ricci tensor and the scalar curvature of M, respectively

Exterior Geometry for Riemannian Geometers

- The exterior bundle $\wedge^{*}(M)=\bigoplus_{k=1}^{n} \wedge^{k}(M)$ inherits the metric and the connection
- Lemma 1 Music and products are parallel

$$
\begin{gathered}
\nabla_{X}\left(Y^{b}\right)=\left(\nabla_{X} Y\right)^{b}, \quad \nabla_{X}\left(\alpha^{\sharp}\right)=\left(\nabla_{X} \alpha\right)^{\sharp} \\
\nabla_{X}(\omega \wedge \eta)=\left(\nabla_{X} \omega\right) \wedge \eta+\omega \wedge\left(\nabla_{X} \eta\right) \\
\left.\left.\left.\nabla_{X}(Y\lrcorner \omega\right)=\left(\nabla_{X} Y\right)\right\lrcorner \omega+Y\right\lrcorner\left(\nabla_{X} \omega\right)
\end{gathered}
$$

- Exterior product and inner product are adjoint each other

$$
\left.\left\langle X^{b} \wedge \omega, \eta\right\rangle=\langle\omega, X\lrcorner \eta\right\rangle
$$

- Riemannian expressions for an old friend and its adjoint

$$
\left.d=\sum_{i=1}^{n} e_{i}^{b} \wedge \nabla_{e_{i}} \quad \delta=-\sum_{i=1}^{n} e_{i}\right\lrcorner \nabla_{e_{i}}
$$

Hermitian Bundles

- Let ΣM be a rank N complex vector bundle over M,\langle, a Hermitian metric and ∇ a unitary connection with
$X\langle\psi, \phi\rangle=\left\langle\nabla_{X} \psi, \phi\right\rangle+\left\langle\psi, \nabla_{X} \phi\right\rangle \quad \psi, \phi \in \Gamma(\Sigma M), X \in \Gamma(T M)$
- The Levi-Cività connection allows us to perform second derivatives

$$
\left(\nabla^{2} \psi\right)(X, Y)=\nabla_{X} \nabla_{Y} \psi-\nabla_{\left(\nabla_{X} Y\right)} \psi
$$

- The skew-symmetric part

$$
R^{\Sigma M}(X, Y) \psi=\left(\nabla^{2} \psi\right)(X, Y)-\left(\nabla^{2} \psi\right)(Y, X)
$$

is tensorial in ψ. It is the curvature operator of $(\Sigma M, \nabla)$

- Skew-symmetry and Bianchi identity

$$
\begin{gathered}
\left\langle R^{\Sigma M}(X, Y) \psi, \phi\right\rangle=-\left\langle\psi, R^{\Sigma M}(X, Y) \phi\right\rangle \\
\left(\nabla_{Z} R^{\Sigma M}\right)(X, Y)+\left(\nabla_{Y} R^{\Sigma M}\right)(Z, X)+\left(\nabla_{X} R^{\Sigma M}\right)(Y, Z)=0
\end{gathered}
$$

Hermitian Bundles

- As a consequence

$$
\alpha(X, Y)=\operatorname{tr} i R^{\Sigma M}(X, Y)=-\sum_{k=1}^{N}\left\langle R^{\Sigma M}(X, Y) \psi_{k}, i \psi_{k}\right\rangle
$$

is a closed two-form with $2 \pi \mathbb{Z}$-periods

- The first Chern class

$$
c_{1}(\Sigma M)=\left[\frac{1}{2 \pi} \alpha\right] \in H^{2}(M, \mathbb{Z})
$$

does not depend on the connection ∇

- When $N=1$ (complex line bundles case)

$$
c_{1}:\left(H^{1}\left(M, \mathbb{S}^{1}\right), \otimes\right) \rightarrow\left(H^{2}(M, \mathbb{Z}),+\right)
$$

is an isomorphism

The Rough Laplacian

- Second derivatives allow to define the rough Laplacian

$$
\Delta: \Gamma(\Sigma M) \rightarrow \Gamma(\Sigma M) \quad \Delta \psi=-\operatorname{tr} \nabla^{2} \psi=-\sum_{i=1}^{n}\left(\nabla^{2} \psi\right)\left(e_{i}, e_{i}\right)
$$

- It is an L^{2}-symmetric non-negative operator, because

$$
\int_{M}\langle\Delta \psi, \phi\rangle=\int_{M}\langle\nabla \psi, \nabla \phi\rangle
$$

for sections of compact support

- It is an elliptic second order differential operator and so it has a real discrete non-bounded spectrum
- When $\Sigma M=M \times \mathbb{C}, \Delta$ is the usual Laplacian

Elliptic Differential Operators

- Lemma 2 Let $L: \Gamma(E) \rightarrow \Gamma(F)$ be an elliptic differential operator taking sections of a vector bundle E on sections of another vector bundle F on a compact Riemannian manifold M.
- Then both ker L and coker L are finite-dimensional and the index of L, defined by ind $L=\operatorname{dim} \operatorname{ker} L-\operatorname{dim}$ coker $L=\operatorname{dim} \operatorname{ker} L-\operatorname{dim} \operatorname{ker} L^{*}$, where $L^{*}: \Gamma(F) \rightarrow \Gamma(E)$ is the formal adjoint of L with respect to the L^{2}-products, depends only on the homotopy class of L.
- If $E=F$ and the operator L is L^{2}-symmetric, then its spectrum is a sequence of real numbers and its eigenspaces are finite-dimensional and consist of smooth sections.

Dirac Bundles

- A simple geometrical tool

$$
\gamma \in \Gamma\left(T^{*} M \otimes \operatorname{End}_{\mathbb{C}}(\Sigma M)\right) \quad \gamma: T M \rightarrow \operatorname{End}_{\mathbb{C}}(\Sigma M)
$$

allowing the definition of a first order operator

$$
D=\sum_{i=1}^{n} \gamma\left(e_{i}\right) \nabla_{e_{i}}
$$

- Compatibility with Hermitian product and connections
$\langle\gamma(Y) \psi, \eta\rangle=-\langle\psi, \gamma(Y) \eta\rangle \quad \nabla_{X} \gamma(Y) \psi=\gamma\left(\nabla_{X} Y\right) \psi+\gamma(Y) \nabla_{X} \psi$ implies that D is L^{2}-symmetric

$$
\int_{M}\langle D \psi, \phi\rangle=\int_{M}\langle\psi, D \phi\rangle, \quad \forall \psi, \eta \in \Gamma_{0}(\Sigma M)
$$

Dirac Bundles

- Compatibility between D and the rough Laplacian Δ comes from the Clifford relations

$$
\gamma(X) \gamma(Y)+\gamma(Y) \gamma(X)=-2\langle X, Y\rangle \quad X, Y \in \Gamma(T M)
$$

and implies

$$
D^{2}=\Delta+\frac{1}{2} \sum_{i, j=1}^{n} \gamma\left(e_{i}\right) \gamma\left(e_{j}\right) R^{\Sigma M}\left(e_{i}, e_{j}\right)
$$

- Consequence: Both D^{2} and D are elliptic
- Consequence: If the manifold M is compact, then D has a real discrete spectrum tending to $+\infty$ and to $-\infty$
- ($\Sigma M,\langle\rangle,, \nabla, \gamma)$ is a Dirac bundle over M, γ is the Clifford multiplication and D is the Dirac operator

Dirac Bundles

- Lemma 3 Let ΣM be a complex vector bundle over a Riemannian manifold M endowed with a Clifford multiplication
 \langle,$\rangle and a unitary connection \nabla$ such that $(\Sigma M,\langle\rangle,, \nabla, \gamma)$ is a Dirac bundle. Moreover, if we make the following changes

$$
\langle,\rangle \hookrightarrow\langle,\rangle^{\prime}=f^{2}\langle,\rangle, \quad \nabla \hookrightarrow \nabla^{\prime}=\nabla+d \log f+i \alpha
$$

where f is a positive smooth function on M and α is a real 1-form, then ($\Sigma M,\langle,\rangle^{\prime}, \nabla^{\prime}, \gamma$) is another Dirac bundle over the manifold M.

Dirac Bundles: New from Old

- Take a Dirac bundle ($\Sigma M,\langle\rangle,, \nabla, \gamma$) and a complex vector bundle $\left(E,\langle,\rangle^{E}, \nabla^{E}\right)$ equipped with a Hermitian metric and a unitary metric connection and put

$$
\Sigma^{\prime} M=\Sigma M \otimes E \quad\langle,\rangle^{\prime}=\langle,\rangle \otimes\langle,\rangle^{E} \quad \nabla^{\prime}=\nabla \otimes \nabla^{E}
$$

- Define a new Clifford multiplication by

$$
\gamma^{\prime}(X)(\psi \otimes e)=(\gamma(X) \psi) \otimes e \quad \psi \in \Gamma(\Sigma M), e \in \Gamma(E)
$$

- Check that ($\Sigma^{\prime} M,\langle,\rangle^{\prime}, \nabla^{\prime}, \gamma^{\prime}$) is another Dirac bundle called ΣM twisted by E
- If E is a complex line bundle, then twisting by E keeps the rank N unchanged

The Exterior Bundle as a Dirac Bundle

- Take as a complex vector bundle

$$
\Sigma M=\wedge_{\mathbb{C}}^{*}(M)=\bigoplus_{k=0}^{n}\left(\Lambda^{k}(M) \otimes \mathbb{C}\right)
$$

endowed with the Hermitian metric and the Levi-Cività connection induced from those of M

- Prove (use Lemma 1) that this definition

$$
\left.\gamma(X) \omega=X^{b} \wedge \omega-X\right\lrcorner \omega \quad X \in \Gamma(T M), \omega \in \Gamma\left(\wedge_{\mathbb{C}}^{*}(M)\right)
$$

provides a compatible Clifford multiplication

- Then $\left(\wedge_{\mathbb{C}}^{*}(M),\langle\rangle,, \nabla, \gamma\right)$ is a Dirac bundle with rank $N=2^{n}$ and its Dirac operator satisfies

$$
\left.D=\sum_{i=1}^{n} e_{i}^{b} \wedge \nabla_{e_{i}}-\sum_{i=1}^{n} e_{i}\right\lrcorner \nabla_{e_{i}}=d+\delta \quad D^{2}=\Delta_{H}
$$

The Exterior Bundle as a Dirac Bundle

- Hodge-de Rham Theorem If M is compact

$$
\operatorname{ker} D=\operatorname{ker} \Delta_{H} \cong H^{*}(M, \mathbb{R})=\bigoplus_{k=1}^{n} H^{k}(M, \mathbb{R})
$$

- The curvature R^{*} of this Dirac operator is easy to compute for 1 -forms and so

$$
\int_{M}|(d+\delta) \omega|^{2}=\int_{M}|\nabla \omega|^{2}+\int_{M} \operatorname{Ric}(\omega, \omega) \quad \omega \in \Gamma_{0}\left(\wedge_{\mathbb{C}}^{1}(M)\right)
$$

- [Bochner Theorem] If M is a compact Riemannian manifold with positive Ricci curvature, then there are no non-trivial harmonic 1-forms on M. As a consequence the first Betti number of M vanishes

The Exterior Bundle as a Dirac Bundle

- If $\omega=d f$ for a smooth function f, then

$$
\int_{M}|\Delta f|^{2}=\int_{M}\left|\nabla^{2} f\right|^{2}+\int_{M} \operatorname{Ric}(\nabla f, \nabla f)
$$

- [Lichnerowicz-Obata Theorem] Let M be a compact Riemannian manifold of dimension n whose Ricci curvature satisfies Ric $\geq \operatorname{Ric}_{\mathbb{S}^{n}(1)}=n-1$ Then, the non-zero eigenvalues λ of the Laplacian operator of M acting on functions satify $\lambda \geq n$ The equality is attained if and only if M is isometric to an n-dimensional unit sphere
- For the equality, solve the Obata equation

$$
\nabla^{2} f=-f\langle,\rangle
$$

The Exterior Bundle as a Dirac Bundle

- The Dirac-Euler operator $D=d+\delta$ does not preserve the degree of forms, but it does preserve the parity of the degree
- Consider the restrictions

$$
D^{\text {even }}=D_{\mid \Gamma\left(\wedge^{\text {even }}(M)\right)} \quad D^{\text {odd }}=D_{\mid \Gamma\left(\wedge^{\text {odd }}(M)\right)}
$$

- They are elliptic operators and adjoint each other
- A First Index Theorem
ind $D^{\text {even }}=\operatorname{dim} \operatorname{ker} D^{\text {even }}-\operatorname{dim} \operatorname{ker} D^{\text {odd }}=\sum_{k \text { even }} b_{k}(M)-\sum_{k \text { odd }} b_{k}(M)=\chi(M)$

$$
\text { ind } D^{\mathrm{even}}=\int_{M} e(M)
$$

An Introduction to the Dirac Operator in Riemannian Geometry

S. Montiel
Universidad de Granada

Varna, June 2007

Antiholomorphic Exterior Bundle as a Dirac Bundle

- Suppose that M is Kähler with dimension $n=2 m$ and take

$$
\Sigma M=\wedge^{0, *}(M)=\bigoplus_{k=0}^{m} \wedge^{0, k}(M) \subset \wedge_{\mathbb{C}}^{*}(M)
$$

endowed with the Hermitian metric and the Levi-Cività connection induced from those of M

- Modify the definition of γ in this way
$\left.\gamma^{*}(X) \omega=\sqrt{2}\left(\left(X^{b} \wedge \omega\right)^{0, r+1}-X\right\lrcorner \omega\right) \quad X \in \Gamma(T M), \omega \in \Gamma\left(\wedge^{0, r}(M)\right)$
- Then $\left(\wedge^{0, *}(M),\langle\rangle,, \nabla, \gamma^{*}\right)$ is a Dirac bundle with rank $N=$ $2^{m}=2^{\frac{n}{2}}$ and its Dirac operator satisfies

$$
\left.D^{*}=\sqrt{2}\left(\sum_{i=1}^{n}\left(e_{i}^{b} \wedge \nabla_{e_{i}}\right)^{0, *}-\sum_{i=1}^{n} e_{i}\right\lrcorner \nabla_{e_{i}}\right)=\sqrt{2}\left(\bar{\partial}+\bar{\partial}^{*}\right)
$$

Antiholomorphic Exterior Bundle as a Dirac Bundle

- Hodge-Dolbeault Theorem If M is a compact Kähler manifold

$$
\operatorname{ker} D^{*}=\operatorname{ker} \Delta_{H \mid \Gamma\left(\Lambda^{0, *}(M)\right)} \cong H^{*}(M, \mathcal{O})=\bigoplus_{k=1}^{m} H^{k}(M, \mathcal{O})
$$

where \mathcal{O} is the sheaf of the holomorphic functions on M

- The curvature $R^{0, *}$ of this Dirac bundle is easy to compute on each degree and only depends on the Ricci curvature of the manifold M
- [Kodaira Theorem] If M is a compact Kähler manifold with dimension $n=2 m$ and positive Ricci curvature, then there are no non-trivial harmonic antiholomorphic q-forms on M with $q>0$. As a consequence $H^{q}(M, \mathcal{O})=0$ for $0<q \leq m$

Antiholomorphic Exterior Bundle as a Dirac Bundle

- The Dirac-Kähler operator $D^{*}=\sqrt{2}\left(\bar{\partial}+\bar{\partial}^{*}\right)$ does not preserve the degree of forms, but it does preserve the parity of the degree
- Consider the restrictions

$$
D^{* \text { even }}=D^{*}{ }_{\mid \Gamma\left(\Lambda^{0, \text { even }}(M)\right)} \quad D^{* \text { odd }}=D^{*}{ }_{\mid \Gamma\left(\Lambda^{0, \text { odd }}(M)\right)}
$$

- They are elliptic operators and adjoint each other
- A Second Index Theorem
ind $D^{* \text { even }}=\sum_{q \text { even }} \operatorname{dim} H^{q}(M, \mathcal{O})-\sum_{q \text { odd }} \operatorname{dim} H^{q}(M, \mathcal{O})=\chi_{\mathcal{O}}(M)$
the Todd genus of M

Rank and Dimension

- Exterior bundle: $N=2^{n}$. Antiholomorphic exterior bundle: $N=2^{\frac{n}{2}}$. Is there some general relation between the rank N of a Dirac bundle ($M,\langle\rangle,, \nabla, \gamma$) and the dimension n of the manifold M ? Must come from $\gamma: T M \rightarrow$ End $_{\mathbb{C}}(\Sigma M)$
- Take $p \in M$. The Clifford algebra $\mathbb{C} \ell\left(T_{p} M\right)$ is the complex algebra spanned by the vectors of $T_{p} M$ subjected to these definition relations

$$
u \cdot v+v \cdot u=-2\langle u, v\rangle, \quad u, v \in T_{p} M
$$

It has complex dimension 2^{n}

- The Clifford relations satisfied by the Clifford multiplication γ mean exactly that it extends to a complex algebra homomorphism
$\gamma_{p}: \mathbb{C} \ell\left(T_{p} M\right) \rightarrow$ End $_{\mathbb{C}}\left(\Sigma_{p} M\right), \quad \gamma_{p}\left(\lambda u_{1} \cdots u_{k}\right)=\lambda \gamma_{p}\left(u_{1}\right) \cdots \gamma_{p}\left(u_{k}\right)$
where $\lambda \in \mathbb{C}$ and $u_{1}, \ldots, u_{k} \in T_{p} M$

Rank and Dimension

- Order an orthomormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ in this way

$$
e_{1}, \ldots, e_{k}, e_{1^{*}}, \ldots, e_{k^{*}} \quad k=\left[\frac{n}{2}\right]
$$

and put

$$
P_{\alpha}=\frac{1}{\sqrt{2}} \gamma_{p}\left(e_{\alpha}\right)-\frac{i}{\sqrt{2}} \gamma_{p}\left(e_{\alpha^{*}}\right), \quad Q_{\alpha}=\frac{1}{\sqrt{2}} \gamma_{p}\left(e_{\alpha}\right)+\frac{i}{\sqrt{2}} \gamma_{p}\left(e_{\alpha^{*}}\right)
$$

- The Clifford relations satisfied by γ_{p} give

$$
P_{\alpha} P_{\beta}+P_{\beta} P_{\alpha}=Q_{\alpha} Q_{\beta}+Q_{\beta} Q_{\alpha}=0, \quad P_{\alpha} Q_{\beta}+Q_{\beta} P_{\alpha}=-\delta_{\alpha \beta}
$$

- See that $P=P_{1} \cdots P_{k} \neq 0$ and choose $\psi=P \psi_{0} \neq 0$. Then $\psi, Q_{\alpha_{1}} \psi,\left(Q_{\alpha_{1}} Q_{\alpha_{2}}\right) \psi, \ldots,\left(Q_{\alpha_{1}} Q_{\alpha_{2}} \cdots Q_{\alpha_{k-1}}\right) \psi,\left(Q_{1} Q_{2} \cdots Q_{k}\right) \psi \in \Sigma_{p} M$ with $1 \leq \alpha_{1}<\ldots<\alpha_{l} \leq k$, are linearly independent.

Rank and Dimension

- Proposition Let ΣM be a rank N Dirac bundle on an n dimensional Riemannian manifold M. Then we have the inequality

$$
N \geq 2\left[\frac{n}{2}\right]
$$

and the equality is attained if and only if the Clifford multiplication

$$
\gamma_{p}: \mathbb{C} \ell\left(T_{p} M\right) \rightarrow \operatorname{End}_{\mathbb{C}}\left(\Sigma_{p} M\right)
$$

at each point p of the manifold provides a complex algebra epimorphism. In fact, in this case, γ_{p} is an isomorphism when n is even and, when n is odd, γ_{p} is an isomorphism when it is restricted to the Clifford algebra of any hyperplane of the tangent space $T_{p} M$

Minimal Rank: Spinor Bundles and Spin ${ }^{c}$ Manifolds

- A Dirac bundle ΣM with minimal rank $N=2^{\left[\frac{n}{2}\right]}$ is called a spinor bundle and its sections $\psi \in \Gamma(\Sigma M)$ are called spinor fields
- A Riemannian manifold M which supports a spinor bundle over it will be said to be a spin ${ }^{c}$ manifold
- A spinc ${ }^{c}$ structure on a spinc manifold M is an isomorphism class of spinor bundles ΣM
- The complex exterior bundle $\Lambda_{\mathbb{C}}^{*}(M)$ over a Riemannian manifold M is not a spinor bundle ($N=2^{n}>2^{\left[\frac{n}{2}\right]}$)
- The antiholomorphic exterior bundle $\wedge_{\mathbb{C}}^{*}(M)$ over a Kähler manifold M is a spinor bundle $\left(N=2^{m}=2^{\frac{n}{2}}=2^{\left[\frac{n}{2}\right]}\right)$. Each Kähler manifold is a spin^{c} manifold

Minimal Rank: Spinor Bundles and Spin ${ }^{c}$ Manifolds

- Proposition Let ($\Sigma M,\langle\rangle,, \nabla, \gamma)$ be a spinor bundle over a spin c manifold M
- Metric and connection uniqueness

$$
\langle,\rangle^{\prime}=f^{2}\langle,\rangle, \quad \nabla^{\prime}=\nabla+d \log f+i \alpha
$$

for a positive smooth function f and a real 1-form α

- Dirac bundles uniqueness

$$
\Sigma^{\prime} M \cong \Sigma M \otimes E
$$

If $\Sigma^{\prime} M$ is another spinor bundle, then E is a line bundle

- $\mathcal{A}_{\Sigma M}=\operatorname{Hom}_{\gamma}(\Sigma M, \overline{\Sigma M})$ has rank one. It is called the auxiliary line bundle of ΣM. If L is an arbitrary line bundle, we have

$$
\mathcal{A}_{\Sigma M \otimes L}=\mathcal{A}_{\Sigma M} \otimes L^{-2}
$$

Minimal Rank: Spinor Bundles and Spin ${ }^{c}$ Manifolds

- Example: $\mathcal{A}_{\Lambda^{0,0}(M)} \cong K_{M}^{-1}=\wedge^{0, m}(M)$
- Consequence: Spin ${ }^{c}$ structures on a spin ${ }^{c}$ manifold are parametrized by $H^{2}(M, \mathbb{Z})$
- Proposition Clifford multiplication uniqueness

$$
\gamma^{\prime}=P \gamma P^{-1}(n \text { even }) \text { or } \gamma^{\prime}= \pm P \gamma P^{-1}(n \text { odd })
$$

for an isometry field $P \in \Gamma\left(\operatorname{Aut}_{\mathbb{C}}(\Sigma M)\right)$

- All these uniqueness results follow from the fundamental fact characterizing spinor bundles among all Dirac bundles: any complex endomorphism of any of its fibers commuting with all the Pauli matrices must be a complex multiple of the identity

Spinor Bundles with Trivial Auxiliary Bundle

- If $\mathcal{A}_{\Sigma M}$ is trivial, any $\phi \in \Gamma\left(\mathcal{A}_{\Sigma M}\right)$ nowhere vanishing section satisfies $\phi^{2}=h I$ for a real function h
- Proposition Let ΣM be a spinor bundle over a spin^{c} manifold M. Then the auxiliary line bundle $\mathcal{A}_{\Sigma M}$ is trivial if and only if there is an isometric real o quaternionic structure on the spinor bundle commuting with γ, that is, a complex antilinear bundle isometry $\theta: \Sigma M \rightarrow \Sigma M$ with $\theta^{2}= \pm I$. This structure is parallel for exactly one of the compatible connections
- On a given spin^{c} manifold M there is a spinor bundle ΣM with trivial auxiliary line bundle iff there is a spinor bundle whose auxiliary line bundle has a squared root

Trivial Auxiliary Bundle: Spin Manifolds

- A spinc manifold M which admits a spinor bundle with trivial auxiliary line bundle will be said to be a spin manifold
- A spin structure on a spin manifold M is an isomorphism class of pairs ($\Sigma M, \theta$) consisting of a spinor bundle ΣM and a quaternionic or real structure θ defined on it. The only connection on ΣM parallelizing θ is called the spin LeviCività connection
- The antiholomorphic exterior bundle $\wedge^{0, *}(M)$ on a Kähler manifold M determines a spin structure iff its canonical line bundle K_{M} is trivial, that is, M is Calabi-Yau. A Kähler manifold is a spin manifold iff K_{M} is a square iff $\left[c_{1}(M)\right]_{\bmod 2}=0$
- Spin structures on a spin manifold are parametrized by $H^{1}\left(M, \mathbb{Z}_{2}\right)$

Topological Consequences

- If M is a spin^{c} manifold, the cohomology class

$$
\left[c_{1}\left(\mathcal{A}_{\Sigma M}\right)\right]_{\bmod 2} \in H^{2}\left(M, \mathbb{Z}_{2}\right)
$$

does not depend on the chosen spinor bundle ΣM

- The obstructions for the auxiliary line bundle to have a squared root and for the bundle of oriented orthonormal frames to have a twofold covering principal bundle with structure group $\operatorname{Spin}(n)$ coincide, that is,

$$
\left[c_{1}\left(\mathcal{A}_{\Sigma M}\right)\right]_{\bmod 2}=w_{2}(M)
$$

Topological Consequences

- Theorem Let M be an oriented Riemannian manifold. If M admits a spinor bundle, then its second Stiefel-Whitney cohomology class satisfies

$$
w_{2}(M) \in \operatorname{im}\left(H^{2}(M, \mathbb{Z}) \rightarrow H^{2}\left(M, \mathbb{Z}_{2}\right)\right)
$$

If M admits a spinor bundle with trivial auxiliary line bundle, that is, if it admits a spinor bundle with a real or quaternionic structure, that is, if it admits a spin structure, then

$$
w_{2}(M)=0
$$

- These necessary topological conditions are also sufficient

Geometrical Consequences

- On any Dirac bundle, compatibility between Clifford multiplication and connections
$\nabla_{Y} \gamma(Z) \psi=\gamma\left(\nabla_{Y} Z\right) \psi+\gamma(Z) \nabla_{Y} \psi \quad Y, Z \in \Gamma(T M), \psi \in \Gamma(\Sigma M)$ implies (taking derivatives and skew-symmetrizing) compatibility between Clifford multiplication and curvatures

$$
R^{\Sigma M}(X, Y)(\gamma(Z) \psi)=\gamma(R(X, Y) Z) \psi+\gamma(Z)\left(R^{\Sigma M}(X, Y) \psi\right)
$$

where $X, Y, Z \in \Gamma(T M)$ and $\psi \in \Gamma(\Sigma M)$

- You can check that this another operator

$$
R^{0}(X, Y) \psi=\frac{1}{4} \sum_{i, j=1}^{n} R\left(X, Y, e_{i}, e_{j}\right) \gamma\left(e_{i}\right) \gamma\left(e_{j}\right) \psi
$$

satisfies the same compatibility as $R^{\Sigma M}$ does

Geometrical Consequences

- Then, the difference $R^{\prime}=R^{\Sigma M}-R^{0}$ satisfies

$$
R^{\prime}(X, Y) \gamma(Z) \psi=\gamma(Z) R^{\prime}(X, Y) \psi \quad X, Y, Z \in \Gamma(T M), \psi \in \Gamma(\Sigma M)
$$

and so commutes with the Pauli matrices

- Consequence: If ΣM is a spinor bundle, this difference R^{\prime} must be a scalar

$$
R^{\Sigma M}(X, Y)=\frac{1}{4} \sum_{i, j=1}^{n} R\left(X, Y, e_{i}, e_{j}\right) \gamma\left(e_{i}\right) \gamma\left(e_{j}\right)+i \alpha(X, Y)
$$

for $X, Y \in \Gamma(T M)$ and where α is a real two-form on M

- If $\theta \in \Gamma\left(\mathcal{A}_{\Sigma M}\right)$, since we have $R^{\mathcal{A}_{\Sigma M}}(X, Y) \theta=\left[R^{\Sigma M}(X, Y), \theta\right]$ and θ commutes with the first addend,

$$
R^{\mathcal{A}_{\Sigma M}}(X, Y)=2 i \alpha(X, Y) \quad X, Y \in \Gamma(T M)
$$

- Proposition The curvature operator of a spinor bundle ΣM over a Riemannian manifold M

$$
R^{\Sigma M}(X, Y)=\frac{1}{4} \sum_{i, j=1}^{n} R\left(X, Y, e_{i}, e_{j}\right) \gamma\left(e_{i}\right) \gamma\left(e_{j}\right)+\frac{1}{2} R^{\mathcal{A}_{\Sigma M}}(X, Y)
$$

is completely determined by the Riemannian curvature of M and the curvature (imaginary valued) two-form of the auxiliary line bundle $\mathcal{A}_{\Sigma M}$

- [Schrödinger-Lichnerowicz formula] If D is the Dirac operator of a spinor bundle, then

$$
D^{2}=\Delta+\frac{1}{4} S+\frac{1}{4} \sum_{i, j=1}^{n} R^{\mathcal{A}_{\Sigma M}}\left(e_{i}, e_{j}\right) \gamma\left(e_{i}\right) \gamma\left(e_{j}\right)
$$

where S is the scalar curvature of M and $R^{\mathcal{A}_{\Sigma M}}$ the curvature of the auxiliary line bundle

- Take $\psi \in \Gamma(\Sigma M)$ in the spinor bundle of a spin structure ΣM on a compact spin manifold M. Then

$$
\int_{M}|D \psi|^{2}=\int_{M}|\nabla \psi|^{2}+\frac{1}{4} \int_{M} S|\psi|^{2}
$$

- [Lichnerowicz Theorem] If M is a compact spin manifold with positive scalar curvature, then there are no non-trivial harmonic spinor fields on any spin structure of M. If we weaken the curvature assumption into non-negative scalar curvature, we have that all harmonic spinor fields must be parallel.
- [Wang Classification] The only simply-connected spin manifolds carrying non-trivial parallel spinor fields are CalabiYau (including hyper-Kähler and flat) manifolds, associative seven-dimensional manifolds and Cayley eight-dimensional manifolds (all of them Ricci-flat)

An Introduction to the Dirac Operator in Riemannian Geometry

S. Montiel
Universidad de Granada

Varna, June 2007

The Index Theorem

- [Hitchin Ph.D. Thesis] The kernel of the Dirac operator of a spinor bundle $\sum M$ on a compact spin ${ }^{c}$ manifold has no topological meaning and its index is zero, but...
- The complex volume element $\omega=i^{\left[\frac{n+1}{2}\right]} \gamma\left(e_{1}\right) \cdots \gamma\left(e_{n}\right)$ is a parallel section of $E n d_{\mathbb{C}}(\Sigma M)$ with $\omega^{2}=I$ which, when n is even, anti-commutes with the Clifford multiplication and so decomposes the spinor bundle and the Dirac operator

$$
\Sigma M=\Sigma^{+} M \oplus \Sigma^{-} M \quad D=D^{+} \oplus D^{-}
$$

into chiral ± 1-eigenbundles with the same rank and the corresponding restrictions which are adjoint each other

- $\operatorname{dim} \operatorname{ker} D=\operatorname{dim} \operatorname{ker} D^{+}+\operatorname{dim} \operatorname{ker} D^{-}$has no topological meaning, but ind $D^{+}=\operatorname{dim} \operatorname{ker} D^{+}-\operatorname{dim} \operatorname{ker} D^{-} \ldots$

The Index Theorem

- [Atiyah-Singer Index Theorem]

$$
\text { ind } D_{E}^{+}=\int_{M} \operatorname{ch}(E) e^{\frac{1}{2} c_{1}\left(\mathcal{A}_{\Sigma M}\right)} \widehat{\mathbb{A}}(M)
$$

for the Dirac operator of a spinor bundle $\sum M$ twisted by a complex vector bundle E, where
$\operatorname{ch}(E)=\operatorname{ch}\left(c_{1}(E), \ldots, c_{l}(E)\right) \quad \widehat{\mathbb{A}}(M)=\widehat{\mathcal{A}}\left(p_{1}(M), \ldots, p_{k}(M)\right)$

$$
\operatorname{ch}\left(c_{1}, \ldots, c_{l}\right)=\sum_{i=1}^{l} e^{x_{i}} \quad \widehat{\mathcal{A}}\left(p_{1}, \ldots, p_{k}\right)=\prod_{j=1}^{k} \frac{y_{j}}{2 \sinh \frac{y_{j}}{2}}
$$

σ_{k} stands for the k-th symmetric elementary polynomial, and

$$
\sigma_{i}\left(x_{1}, \ldots, x_{l}\right)=c_{i}, \quad \sigma_{j}\left(y_{1}^{2}, \ldots, y_{k}^{2}\right)=p_{j}
$$

where $c_{i}(E) \in H^{2 i}(M, \mathbb{Z})$ are the Chern classes of $E, p_{j}(M) \in$ $H^{4 j}(M, \mathbb{Z})$ the Pontrjagin classes of M, and $c_{1}\left(\mathcal{A}_{\Sigma M}\right) \in H^{2}(M, \mathbb{Z})$ the Chern class of the auxiliary line bundle

The Index Theorem: Aplications

- If $n=\operatorname{dim} M=2$, then
$\operatorname{ch}(E)=l+c_{1}(E), \quad e^{\frac{1}{2} c_{1}\left(\mathcal{A}_{\Sigma M}\right)}=1+\frac{1}{2} c_{1}\left(\mathcal{A}_{\Sigma M}\right), \quad \widehat{\mathbb{A}}(M)=1$
- [Index Theorem for Surfaces]

$$
\text { ind } D_{E}^{+}=\int_{M}\left(\frac{l}{2} c_{1}\left(\mathcal{A}_{\Sigma M}\right)+c_{1}(E)\right)
$$

- Spin case (trivial $\mathcal{A}_{\Sigma M}$ and E): ind $D_{E}^{+}=0$
- The case of the antiholomorphic exterior bundle ($\Sigma M=$ $\wedge^{0, *}(M)$ and $\left.\mathcal{A}_{\Sigma M}=K_{M}^{-1}\right)$
$\operatorname{dim} H^{0}(M, \mathcal{O}(E))-\operatorname{dim} H^{1}(M, \mathcal{O}(E))=l(1-g(M))+\int_{M} c_{1}(E)$
which is the Riemann-Roch theorem

The Index Theorem: Aplications

- If $n=\operatorname{dim} M=4$ and $\mathcal{A}_{\Sigma M}$ is trivial, then
$\operatorname{ch}(E)=l+c_{1}(E)+\frac{1}{2}\left(c_{1}(E)^{2}-2 c_{2}(E)\right) \quad \widehat{\mathbb{A}}(M)=1-\frac{1}{24} p_{1}(M)$
- [Index Theorem for Spin Four-Manifolds]

$$
\text { ind } D_{E}^{+}=\int_{M}\left(\frac{1}{2} c_{1}(E)^{2}-c_{2}(E)-\frac{l}{24} p_{1}(M)\right)
$$

- Case $E=\Sigma M\left(l=4, c_{1}(E)=0\right.$ because of the existence of the structure θ and $p_{1}(M)=-2 c_{2}(E)$ because of $T M \otimes \mathbb{C} \cong$ $\left.\Sigma^{+} M \otimes \Sigma^{-} M\right)$
- Therefore

$$
\text { ind } D_{\Sigma M}^{+}=\frac{1}{3} \int_{M} p_{1}(M)
$$

The Index Theorem: Aplications

- If $n=\operatorname{dim} M=4$ and $\mathcal{A}_{\Sigma M}$ is trivial, we had

$$
\text { ind } D_{\Sigma M}^{+}=\frac{1}{3} \int_{M} p_{1}(M)
$$

- But $\Sigma M \otimes E=\Sigma M \otimes \Sigma M \cong E^{n} d_{\mathbb{C}}(\Sigma M) \stackrel{\gamma}{\cong} \wedge_{\mathbb{C}}^{*}(M)$ and so $D_{E}=d+\delta$
- See that $\omega \in \operatorname{End}_{\mathbb{C}}\left(\wedge_{\mathbb{C}}^{*}(M)\right)$ coincides with the Hodge $*$ up to a sign
- [Hirzebruch Signature Theorem] Let M be a compact (spin) manifold of dimension four. Then, the signature of M is related with its first Pontrjagin class as follows

$$
\sigma(M)=b_{2}^{+}(M)-b_{2}^{-}(M)=\frac{1}{3} \int_{M} p_{1}(M)
$$

The Index Theorem: Aplications

- [Index Theorem for Spin Four-Manifolds II]

$$
\text { ind } D_{E}^{+}=-\frac{l}{8} \sigma(M)+\int_{M}\left(\frac{1}{2} c_{1}(E)^{2}-c_{2}(E)\right)
$$

- Take E as a trivial line bundle, then

$$
\text { ind } D^{+}=-\frac{1}{8} \sigma(M)
$$

and remember that the quaternionic structure preserves $\Sigma^{+} M$ and commutes with the Dirac operator

- [Rochlin Theorem] Let M be a four-dimensional compact spin manifold. Then, the signature of M is divisible by 16
- There are simply-connected compact topological four-manifolds with $w_{2}(M)=0$ and $\sigma(M)=8$ (!?)

The Index Theorem: Aplications

- [Integrality of the \widehat{A}-genus] We define the \widehat{A}-genus of an even-dimensional compact manifold as the rational number

$$
\hat{\mathrm{A}}(M)=\int_{M} \widehat{\mathbb{A}}(M)
$$

Then, if M is spin its \hat{A}-genus is an integer number

- [Lichnerowicz Theorem] Let M be a compact spin Riemannian manifold with positive scalar curvature. Then the \hat{A}-genus of M vanishes
- Notice that $\mathbb{C} P^{2}$ is a compact non-spin four-manifold with

$$
\widehat{\mathrm{A}}\left(\mathbb{C} P^{2}\right)=-\frac{1}{8} \sigma\left(\mathbb{C} P^{2}\right)=-\frac{1}{8}
$$

and admits a metric with positive scalar curvature

The Spectrum of the Dirac Operator

- Bochner/Lichnerowicz-Obata=Lichnerowicz/Friedrich-Bär
- If M is a compact spin manifold, the integral SchrödingerLichnerowicz formula gave

$$
\int_{M}\left(|D \psi|^{2}-|\nabla \psi|^{2}-\frac{1}{4} S|\psi|^{2}\right)=0
$$

for each $\psi \in \Gamma(\Sigma M)$

- Use this Schwarz inequality
$|D \psi|^{2}=\left|\sum_{i=1}^{n} \gamma\left(e_{i}\right) \nabla_{e_{i}} \psi\right|^{2} \leq\left(\sum_{i=1}^{n}\left|\gamma\left(e_{i}\right) \nabla_{e_{i}} \psi\right|\right)^{2}=\left(\sum_{i=1}^{n}\left|\nabla_{e_{i}} \psi\right|\right)^{2} \leq n|\nabla \psi|^{2}$
and get the Friedrich inequality

$$
\int_{M}\left(|D \psi|^{2}-\frac{n}{4(n-1)} S|\psi|^{2}\right) \geq 0
$$

The Spectrum of the Dirac Operator

- [Friedrich Theorem] Let M be a compact spin manifold of dimension n whose scalar curvature satisfies $S \geq S_{\mathbb{S}^{n}(1)}=n(n-1)$ Then, the eigenvalues λ of the Dirac operator of any spin structure of M satify $|\lambda| \geq \frac{n}{2}$
- For the equality, solve the Killing spinor equation

$$
\nabla \psi=\mp \gamma \psi
$$

- [Bär Classification] Let M be a compact simply connected spin Riemannian manifold admitting a non-trivial Killing spinor field. Then M is isometric to a sphere \mathbb{S}^{n}, or to an Einstein-Sasakian manifold, or to a six-dimensional nearlyKähler non-Kähler manifold, or to a seven-dimensional associative manifold

The Spectrum of the Dirac Operator

- Conformal change of metric: If $(\Sigma M,\langle\rangle,, \nabla, \gamma)$ is a spinor bundle on (M,\langle,$\left.\rangle), then (\Sigma M,\langle\rangle,, \nabla^{*}, \gamma^{*}\right)$ with

$$
\nabla^{*}=\nabla-\frac{1}{2} \gamma(\cdot) \gamma(\nabla u)-\frac{1}{2}\langle\cdot, \nabla u\rangle \quad \gamma^{*}=e^{u} \gamma
$$

is a spinor bundle on $\left(M,\langle,\rangle^{*}\right)$ with

$$
\langle,\rangle^{*}=e^{2 u}\langle,\rangle
$$

- Conformal covariance of the Dirac operator:

$$
D^{*}\left(e^{-\frac{n-1}{2} u} \psi\right)=e^{-\frac{n+1}{2} u} D \psi, \quad \psi \in \Gamma(\Sigma M)
$$

- Recipe: Write the Friedrich inequality for the conformal metric \langle,\rangle^{*} and use this conformal covariance

The Spectrum of the Dirac Operator

- Result: A new conformal Friedrich inequality

$$
\int_{M} e^{-u}\left\{|D \psi|^{2}-\frac{n}{4(n-1)} S^{*} e^{2 u}|\psi|^{2}\right\} \geq 0
$$

valid for $\psi \in \Gamma(\Sigma M)$ and for all smooth function $u \in C^{\infty}(M)$

- Choose u to do $S^{*} e^{2 u}$ constant taking into account that

$$
S^{*} e^{2 u}=\left\{\begin{array}{l}
e^{-\frac{n-2}{2} u} \mathcal{Y} e^{\frac{n-2}{2} u} \text { if } n \geq 3 \\
-2 \Delta u+2 K \text { if } n=2
\end{array}\right.
$$

to become constant, where $\mathcal{Y}=\frac{4(n-1)}{n-2} \Delta+S$ is the Yamabe operator

- A suitable choice gives

$$
S^{*} e^{2 u}=\left\{\begin{array}{l}
\left.\mu_{1}(\mathcal{Y}) \text { (the first eigenvalue of } \mathcal{Y}\right) \text { if } n \geq 3 \\
\frac{4 \pi \chi(M)}{A(M)} \text { if } n=2
\end{array}\right.
$$

The Spectrum of the Dirac Operator

- [Hijazi Theorem] Suppose that λ is an eigenvalue of the Dirac operator of a compact spin Riemannian manifold M with dimension $n \geq 3$ which admits a conformal metric with positive scalar curvature. Then

$$
\lambda^{2} \geq \frac{n}{4(n-1)} \mu_{1}(\mathcal{Y})
$$

where $\mu_{1}(\mathcal{Y})$ is the first eigenvalue of the Yamabe operator of M

- [Bär Theorem] If M is a compact spin surface of genus zero and λ is an eigenvalue of its Dirac operator, then

$$
\lambda^{2} \geq \frac{4 \pi}{A(M)}
$$

where $A(M)$ is the area of M

The Spectrum of the Dirac Operator

- If M is a compact spin manifold with non-empty boundary $\partial M=\mathcal{S}$, the integral Schrödinger-Lichnerowicz formula has a boundary term

$$
\int_{M}\left(|D \psi|^{2}-|\nabla \psi|^{2}-\frac{1}{4} S|\psi|^{2}\right)=-\int_{\mathcal{S}}\left\langle\gamma(N) D \psi+\nabla_{N} \psi, \psi\right\rangle
$$

where $\psi \in \Gamma(\Sigma M)$ and N is the inner unit normal

- Restriction of the spinor bundle: If ($\Sigma M,\langle\rangle,, \nabla, \gamma)$ is the spinor bundle on M, then $\left(\Sigma M_{\mid \mathcal{S}},\langle\rangle,, \not, \not / \not /\right)$ with

$$
\not \nabla=\nabla-\frac{1}{2} \gamma(A \cdot) \gamma(N) \quad \nLeftarrow=\gamma \gamma(N)
$$

is a Dirac bundle on the hypersurface \mathcal{S}

The Spectrum of the Dirac Operator

- [Reilly Inequality] Rewrite the bundary term using the structure of the restricted Dirac bundle and use the same Schwarz inequality as in the boundary free case. Then

$$
\int_{M}\left(\frac{1}{4} S|\psi|^{2}-\frac{n}{n+1}|D \psi|^{2}\right) \leq \int_{\mathcal{S}}\left(\langle D \psi \psi, \psi\rangle-\frac{n}{2} H|\psi|^{2}\right)
$$

for $\psi \in \Gamma(\Sigma M)$ and where H is the (inner) mean curvature of the n-dimensional boundary

- [Reilly-Witten Trick] When the bulk manifold M has nonnegative scalar curvature, solve a boundary problem

$$
D \psi=0 \text { on } M \quad \pi_{+} \psi_{\mid \mathcal{S}}=\pi_{+} \phi \text { along } \mathcal{S}
$$

for a given spinor field ϕ on the boundary and a suitable π_{+} (usually needed $H \geq 0$)

The Spectrum of the Dirac Operator

- Witten proof of the positive mass: M is a complete noncompact asymptotically Euclidean three-manifold with nonnegative scalar curvature. Take \mathcal{S}_{r} as the sphere $|x|=r$ and choose ϕ_{r} as a unit Killing spinor for the round metric. Then

$$
0 \leq \lim _{r \rightarrow+\infty} \int_{\mathcal{S}_{r}}\left(\left\langle D \psi_{r}, \psi_{r}\right\rangle-H_{r}\left|\psi_{r}\right|^{2}\right)=4 \pi m
$$

where m is a constant asociated to the end: its mass

- Other choice: M is a compact spin manifold with nonnegative scalar curvature and the hypersurface boundary \mathcal{S} has non-negative (inner) mean curvature. Take ϕ as an eigenspinor for the eigenvalue of \mathbb{D} with the least absolute value

The Spectrum of the Dirac Operator

- [Hijazi-M-Zhang extrinsic comparison] Let \mathcal{S} be a hypersurface bounding a domain in a spin manifold of dimension $n+1$ with non-negative scalar curvature and suppose that the mean curvature of \mathcal{S} satisfies $H \geq H_{\mathbb{S}^{n}(1)}=1$ Then, the eigenvalues λ of the Dirac operator of the induced spin structure of \mathcal{S} satify $|\lambda| \geq \frac{n}{2}$ and the equality holds iff the eigenspinors associated to $\pm \frac{n}{2}$ are restrictions to \mathcal{S} of parallel spinors on the bulk manifold M

