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Nonlinearity

The need of taking into full account 
the nonlinearity of Einstein's equations 
when studying gravitational waves 
from strong sources is generally 
recognized. 
Despite the great distance of the 
sources from Earth (where most of 
detectors are located) there are 
situations where the nonlinear effects 
cannot be neglected.
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Christodoulou memory

When the source is a coalescing 
binary a secondary wave is 
generated via the non linearity of 
Einstein's field equations. 
The memory seems to be too weak to 
be detected from the present 
generation of interferometers (even if 
ω is in the optimal band for 
LIGO/VIRGO interferometers)



Gaetano Vilasi, Salerno University, Italy 7



Gaetano Vilasi, Salerno University, Italy 8



Gaetano Vilasi, Salerno University, Italy 9



Gaetano Vilasi, Salerno University, Italy 10

Exact
gravitational waves

However, the Christodoulou memory is of the 
same order as the linear effects related to the 
same source, thus stressing the relevance of 
the nonlinearity of the Einstein's equations 
also from an experimental (LIGO/VIRGO/ 
NAUTILUS) point of view.
For these reasons exact solutions of the 
Einstein equations deserve special attention 
when they are of propagative nature.
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Role of 
exact solutions

Explicit solutions enable to discriminate 
more easily among physical or pathological
features. 
Where are there singularities? 
What is their character? 
How do test particles and fields behavior in 
given background space-times?
What are their global structures? 
Is a solution stable and generic?
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Problem
Classification of gravitational fields  
(not only Ricci-flat metrics) invariant 
for a Lie algebra G of Killing vector 
fields, such that:

I. The distribution D, generated by     
vector  fields  belonging  to  G,   
is  2-dimensional.
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An integrable
gravitational case

Ernst, Maison, Harrison, …,Belinsky, Zakharov:
Einstein field equations for a metric of the form
g = f (z, t)(dt2-dz2) + h11(z, t)dx2 + h22(z, t)dy2 + 2h12(z, t)dxdy
reduce essentially to

∂ξ(αH-1∂ηH)+∂η(αH-1∂ξ H) = 0

H =||hab||;  ξ = (t + z)/√2; η = (t - z)/√2 ; α=√|detH|. 

G-Inverse Scattering Transform yields solitary wave 
solutions.                                                  Geon
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The choice of coordinates

The choice of coordinates also
depends on

1. the properties of the distribution, D⊥, 
orthogonal to D,

2. the rank of the metric restricted to the 
leaves of D .
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Several cases

II. The distribution D⊥ is:

IIa integrable and transversal to D.
IIb semintegrable and transversal to D
IIc non integrable and transversal to D
IId integrable and not transversal to D.
IIe semintegrable and not transversal to D
IIf non integrable and not transversal to D
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(G2, r)-type metrics
The case, in which the metric g restricted to
any integral (2-dimensional) submanifold
(Killing leaf) of the distribution D is
degenerate, splits naturally into two sub-
cases according to whether the rank r of g
restricted to Killing leaves is 1 or 0. 
In order to distinguish various cases occurring
in the sequel, the notation (G2, r) will be used: 
metrics satisfying the conditions I and IIa will
be called of (G2,2)-type; metrics satisfying
conditions I and II d,e or f (D and D⊥, are not
transversal) will be called of (G2,1)-type or of 
(G2,0)-type according to the rank of their
restriction to Killing leaves.
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2-dimensional 
Lie algebra of isometries

D⊥,  r=2 D⊥,  r=1 D⊥,  r=0
G2

integrable integrable integrable

G2
semi-integrable semi-integrable semi-integrable

G2
non-integrable non-integrable non-integrable

A2
integrable integrable integrable

A2
semi-integrable semi-integrable semi-integrable

A2
non-integrable non-integrable non-integrable



Gaetano Vilasi, Salerno University, Italy 18

The integrable case.
Local aspects

Complete classification of gravitational 
fields  (not only Ricci-flat metrics) 
invariant for a Lie algebra G of Killing 
vector fields, such that:
I. The distribution D, generated by     

vector  fields  belonging  to  G,  is     
2-dimensional.

II. The distribution D⊥, orthogonal to D,     
is integrable and transversal* to D.
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The integrable case.
Global aspects

Global solutions of the Einstein field equations 
can also be constructed.

Two cases: dim G =2 or dim G =3. They are 
qualitatively different but all manifolds satisfying 
the assumptions I and II are in a sense fibered 
over ζ-complex curves.|→ global solutions of 
vacuum Einstein equations.
If dim G =3, condition II follows from I.
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History

Only two 2-d Lie algebras: A2 and G2.  
A gravitational field g satisfying I and II, with G = A2 or G2, is said 
to be G -integrable.

1916 A2 -integrable gravitational fields by Weyl.
1937 A2 -integrable grav. waves by Einstein-Rosen.
1958 A2-integrable grav. fields by Kompaneyets and Landau.
1979 A2 -integrable grav. solitary waves by Belinsky-Zakharov.
2000 G2 -integrable gravitational fields by G.S, G.V, A.V.
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Notation

Manifolds M are connected and C ∞,
Metric: a non-degenerate symmetric (0,2) tensor field,
Kil(g): the Lie algebra of all Killing fields of a metric g,
Killing algebra: a sub-algebra of Kil(g)
Killing leaves of g: integral sub-manifolds of the distribution 

generated by vector fields of Kil(g)
A2 : a 2d Abelian Lie algebra, 
G2 : a 2d non-Abelian Lie algebra,
G-integrable metric: metric satisfying I & II, with G=A2 or G2
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Semi-adapted
coordinates

Let g be a metric on the space-time M (a 
connected smooth manifold), G2 =Span(X,Y)
one of its  Killing algebra

[X,Y]=sY,     s=0,1

The Frobenius distribution D (possibly with 
singularities) generated by X and Y is 2d.
In a neighbourhood of a non-singular point 
of D a chart (xμ) (semi-adapted ) exists such 
that

X= ∂3 ,   Y=esx3∂4
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Invariant gravitational fields

A gravitational field g admits X and Y as Killing fields 
iff in a s-a chart has the  form

g|S=gijdxidxi+2(li+smi) dxidx3-2midxidx4+
[s2λ(x4)2-2sμx4+ν]dx3dx3+2 [μ-sλx4]dx3dx4+
λdx4dx4

with gij , mi , li ,λ, μ,ν functions of (x1, x2)
(Note: det H= λν −μ2 )
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Invariant
anholonomic basis

ei = ∂i , e3 =∂3+s∂4 , e4 =-∂4;            [ eμ , eν]=cα
μνeα

θi =dxi, θ3 =dx3, θ4 =sx4 dx3- dx4; 2dθα =- cα
μν θμ Λθν

(gij ) (li )  (mi)

(li )
(mi )+

ν -μ
-μ λ
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Killing leaves
Condition II allows to construct semi-adapted charts {x, y, x3, x4}
such that the fields e1=∂x and e2=∂y, belong to D⊥.
In such a chart, called from now on adapted, the components li, 
mi vanish. 
Related s-adapted vierbeins will be called adapted vierbeins.
Killing leaf: integral submanifold of D. 
Orthogonal leaf: integral submanifold of D⊥.
Since D⊥. is transversal to D, the restriction g|S of g to any
Killing leaf S is non degenerate. 
Then (S,g|S) is a 2d Riemannian manifold on which the
isometry group G2 act transitively. Thus, it is homogeneous; in 
particular, the Gauss curvature K(S) of the Killing leaves is 
constant.
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Gauss curvature   
of Killing leaves

The Gauss curvature K(S) of the Killing  leaves can be easily 
computed in the chart (p=x3|S, q=x4|S), where the metric g|S has 
the form

g|S=(s2λq2-2sμq+ν)dp2+2(μ-sλq)dpdq+λdq2,

K(S)=-s2λ (λ ν –μ2)-1; 

The function K(x1, x2)=-s2λ(λ ν−μ2)-1 describes the behavior of 
Gauss curvature in passing from one  Killing leaf to another.
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The Ricci tensor field

Even in the adapted invariant vielbein its 
components are too complicated and we will 
not write them.
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Reduced Einstein
equations  for s ≠ 0.

∂ξ(αH-1∂ηH)+ ∂η(αH-1∂ξ H) = 2sII f g(Y,Y)/α
……………….
……………….
……………….
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Solutions of Einstein 
equations for g(Y,Y) ≠ 0

If the Killing field Y is not of light type, then in the adapted coordinates (x, y, 
p, q) one has

g=f(dx2±dy2)+ β2[(s2kq2-2slq+m)dp2+
2(l-skq)dpdq+ kdq2]

f=- Δ±β2 /(2s2k) and β(x,y) a solution of the tortoise equation

β+A ln|β -A|=u(x,y)

with Δ±u = 0 s. t. |grad±u| ≠ 0 ; Δ± = ∂2
xx ± ∂2

yy ; k, l, m consts, km- l2 = ± 1, k ≠ 0,
(Δ±β2 ≠ 0⇔ |grad±u| ≠ 0; Δ±β2 = β(grad±β)2/(β-A))
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Canonical form of 
metrics for g(Y,Y) ≠ 0

It is not clear whether if the given local metrics are pairwise
different or not. The gauge freedom can be eliminated as 
follows:

The general integral of the equation Δ±u =0 satisfying the 
condition |grad±u |≠0 defines, in both cases ±, two non constant
functions

+ ↵ u and its conjugate harmonic v, for Δ+ u =0
- ↵ u =F(x+y)+G(x-y),          v = F-G, for Δ- u =0

By using (u,v) as new coordinates on the orthogonal leaves
g=[e[(u-β)/A]/(2s2kβ)](du2±dv2)+
β2[(s2kq2-2slq+m)dp2+2(l-skq) dpdq+ kdq2]
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Normal form of 
metrics for g(Y,Y) ≠ 0

On the Killing leaves it is also possible to introduce coordinates 
(θ,φ) diagonalizing the metric g|S to the form

g|S = β2[dθ2+Θ(θ)dφ2],
where Θ(θ) is equal either to sinh2θ or -cosh2θ,  depending on 
the signature of the metric. In the normal coordinates, (r=2s2kβ, 
τ=v, θ, φ), the metric takes the normal form (with ε1 =±1, ε2 =±1)

g =ε1([1-A/r]dτ2±[1-A/r]-1dr2)+ε2r2[dθ2+Θ(θ)dφ2]

The geometric reason for this form is that when Y is not isotropic, 
a third Killing field exists, say Z, which together with X and Y
constitute  a basis of the so(2,1) Lie algebra.
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so(3) - invariant 
Ricci-flat metrics

The above results lead to expect that vacuum 
gravitational fields, with Killing algebras isomorphic to 
so(3) with 2d leaves, can be essentially described as 
it was done in the case of so(2,1) .
Also in this case the solutions depend on  the tortoise 
equation and this gives new insight to the physical 
meaning of the so called Regge-Wheeler tortoise 
coordinate.

g=f(dx2 ±dy2)+ r2(x,y)[dθ2+sin2θdφ2]
f = Δ±r2 ,       r +A ln|r-A| = x
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Ricci-flat metrics 
for g(Y,Y) = 0

∂ξ(αH-1∂ηH)+ ∂η(αH-1∂ξ H) = 2s2If g(Y,Y)/α
General solution, in a. c. (x, y,p, q), 
g = 2f (dx2 ± dy2) + μ[(w(x,y) − 2sq)dp2 + 2 dp dq],

μ = DΦ + B; D, B in R , ΔΦ=0 , f =(gradΦ)2/√|μ|
 μΔw + ∂x(μ)∂xw + ∂y(μ)∂yw = 0.

Lorentzian (+); Kleinian (−)
The Gauss curvature of Killing leaves vanishes.
Two superposition laws
Special solutions: w= μ’, w = ln|μ|,  μ’ is h. conj. with μ.
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Physical properties

Sources
Asymptotic flatness
Wave-like character
Energy
Polarization
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Which signature?

Metrics may be Lorentzian or Kleinian.
Ricci flat manifolds of Kleinian signature appear
in the no boundary proposal of Hartle and 
Hawking in which the idea is suggested that the 
signature of the space-time metric may have
changed in the early universe. 
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Dust and cosmic 
strings sources

The simplest source for previous metrics is dust with
density ρ and velocity Uμ and, then, with Tμν = ρUμUν .
When Uμ is a light-like vector field, Tμν can describe 
the energy and momentum of electromagnetic waves
(Fμν=0, εαβμνFαβ Fμν =0). Such metrics could describe 
the emission of gravitational waves from γ-ray bursts.
Being the time coordinate in the Killing leaves, the 
dust cannot move orthogonally to them and it will be 
chosen to move parallel to the light-like Killing field Y , 
i.e., with velocity Uμ = δμ4.
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Non vacuum Einstein 
metrics when g(Y,Y) = 0

General solution, in a. c. (x, y,p, q), 
g = 2f (dx2 + dy2) + μ[(w(x,y)− 2q)dp2 + 2 dp dq],
μ = DΦ + B; D and B in RR ,  ΔΦ=0 , f =(gradΦ)2/√|μ|

μΔw + gradμ.gradw =2μ2fρ
 Δw + ∂x(ln|μ|)∂xw + ∂y(ln|μ|)∂yw = 2μ f ρ.

 

The Gauss curvature of Killing leaves vanishes.
Superposition law
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Physical (?) coordinates
The coordinates (p,q) on Killing leaves have a 
transparent geometric interpretation. 

In the “diagonalizing” coordinates (x,y,z,t)
2z=(2q-w) e-p+ep;      2t=(2q-w) e-p-ep

g = 2f (dx2 + dy2) + μ[dz2 - dt2 + dw.d(lnIz-tI)]      (for z>t)

In the new coordinates (x, y, u, v) 
p = ln|u| ; q = uv

g = 2f(x, y)[dx2 + dy2]+ μ[2dudv + wu-2 du2]

Both coordinates (x,y,z,t) and (x,y,u,v) are harmonic
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Asymptotic flatness, 
wave-like character and spin

For f = 1/2 and μ = 1, previous metrics are 
locally diffeomorphic to a subclass of vacuum 
Peres solutions  corresponding to a special 
choice of th harmonic function parameterising
them (Bonnor, Aichelburg, Sexl).
In the new (harmonic) coordinates (x, y, u, v) 

p = ln|u| ; q = uv
g = dx2 + dy2+ 2dudv + wu-2 du2
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Flatness
In order to have everywhere regular spatially asymptotically 
flat solutions, f and w must be constant functions and the 
fluid density ρ must vanish fast enough.
However, if we admit δ-like singularities in the x-y plane, 
spatially asymptotically flat vacuum solutions with f ≠ const
and w ≠ const can exist. In this limiting case in which ρ(x,y)
δ(x,y), the energy-momentum tensor becomes the one 
usually employed to describe the gravitational effects of 
topological defects known as cosmic strings. 
This kind of extended objects are predicted in some particles 
physics cosmological models with phase transitions. 
Moreover, cosmic strings could have an important role in the 
description of two very interesting astrophysical phenomena: 
the GRBs and ultra high energy (E ~ 1011GeV) cosmic rays.
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Wave-character 
of the field

The non vanishing independent components of the 
Riemann tensor are:

Riuju = -∂2ijh; h=w/u2 ,    i, j = x, y
The wave character and the polarization  may be
analysed in many ways. For example, we could use 
the Zel’manov criterion to show that these are 
gravitational waves and the Landau-Lifshitz pd-tensor
to find the propagation direction. 
However, the algebraic Pirani’s criterion determines 
the wave character and the propagation direction both 
at once. Moreover,  in the vacuum, the two methods 
agree. To use this criterion the Weyl scalars must be 
evaluated according to the Petrov-Penrose
classification
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The Landau-Lifchitz
pseudo-tensor

It has been seen that it yields the correct definition of energy for
relevant cases. In facts, the energy flux radiated at infinity for
an asymptotically flat space–time, evaluated with the Landau-
Lifshitz pseudotensor, has been seen to agree with the Bondi
flux that is with the energy flux evaluated in the exact theory.
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The Petrov-Penrose 
classification

The P-P classification, needs a tetrad basis with 2 real null 
vector fields (vf) and 2 real spacelike (or 2 complex null) vf.
According to Pirani’s criterion, a metric of type Petrov N is a 
g.w. propagating along one of the two real null vector fields.
New coordinates adapted to the Petrov-Penrose classification

x →x,  y →y,  u →u,  v →v + φ(x, y, u)
g = dx2 + dy2 + 2dudv + 2(φ,xdx + φ,ydy )du;        φ,u = h 

Since ∂u and ∂v are null real vf and ∂x and ∂y spacelike real vf, 
in the above coordinates Pirani’s criterion can be applied.
The only nonvanishing components of Riemann tensor are

Riuju = -∂2ij ∂uφ,     i, j = x, y,
so that these gravitational fields belong to Petrov type N.
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Our waves

As it has been shown, solutions we are 
considering, represent gravitational waves
moving at the velocity of light, that is, in 
the would be quantized theory, particles
with zero rest mass. 
Thus, if a classification in terms of 
Poincaré group invariants could be
performed, these waves would belong to
the class of unitary (infinite-dimensional) 
representations of the Poincaré group
characterized by P²=0, W²=0.



Gaetano Vilasi, Salerno University, Italy 46

The polarization

The definition and the meaning of spin or 
polarization for a theory, such as general
relativity which is non-linear, deserve a 
careful analysis.    It is well known that the 
concept of particle together with its degrees
of freedom like the spin may be only
introduced for linear theories (for example for
the Yang-Mills theories, which are non linear, 
we need to perform a perturbative expansion
around the linearized theory). 
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The Pauli-Ljubanski
vector

In linear theories, when Poincaré invariant, the 
particles are classified in terms of the 
eigenvalues of two Casimir operators of the 
Poincaré group, P² and W² where Pμ are the 
translation generators and Wμ =(1/2)εμνρσ PνMρσ

is the Pauli-Ljubanski polarization vector with
Mρσ Lorentz generators. Then, the total angular
momentum J=L+S is defined in terms of the 
generators Mρσ as Ji=(1/2)ε0ijkMjk. 
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The spin in the 
linearized theory

Recall that, in order for such a classification to be
meaningful P² and W² have to be invariants of the 
theory. This is not the case for general relativity, 
unless we restrict to a subset of transformations
selected for example by some physical criterion or by
experimental constraints. For the solutions of the 
linearized vacuum Einstein equations the choice of 
the harmonic gauge does the job. There, the residual
gauge freedom corresponds to the sole Lorentz
transformations. As in the linearized theory, of the 
whole diffeomorphisms group just the Lorentz
transformations preserve the harmonic gauge. That
is, we are allowed to speak about polarization if we
stay in the harmonic gauge.
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Linearized
Einstein equations

gμν=ημν+hμν       with |hμν |<<1,  |∂αhμν |<<1 

ηαβ∂α∂β hμν = 0, ηαμ∂α(hμν − ημνh)=0  (in vacuum)

ηαβ∂α∂β hμν = −16πG(Tμν +τμν ), ηαμ∂α(hμν − ημνh)=0

h= ηρσ hρσ ,      R(1)
μν=ηαβ∂α∂β hμν
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The energy momentum tensor of 
gravity in the linearized theory

Any function hμν of r=kμxμ, with kμkμ=0, is solution
of the wave equation and the energy and the 
momentum of the wave are given by
τ0

0= (u22-u11)2 + (u12)2 ,   τ3
0 = τ0

0;    uμν =dhμν /dr
kμ=(1,0,0-1)
If R is the generator of a rotation in the x-y plane
R (u22-u11)=-4u12
R u12 =u22 -u11                                      
so that

R2(u22-u11)=- 4(u22-u11) ;     R2u12=- 4u12
Thus, the eigenvalues of iR are  ±2
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Spin
Once the propagation direction has been 
determined, to compute the polarization we 
only need to look at the transformation 
properties of physical components of the 
metric under a rotation in the x-y plane 
orthogonal to the propagation direction. 
A good opportunity! 
The exact gravitational wave  

g = dx2 + dy2+ dz2 - dt2 + dw.d(lnIz-tI)
=η+h

is also solution of the linearized Einstein 
equations 
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The energy-momentum
density

The Landau-Lifchitz pseudotensor and the 
Bel superenergy tensor single out the 
same degrees of freedom:

τ0
0= (∂xhtx)2 + (∂xhty)2 ;     τ3

0= τ0
0 

This shows that the physical components 
of these waves have only one index in the 
x-y plane orthogonal to the propagation 
direction ∂u.

Spin-1?
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Is the Light heavy or light  ?   

Attraction or Repulsion !

Spin-1
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