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Introduction Overview

Introduction

Conformal Field Theory (CFT):
Special class of 2D quantum field theories.
Mathematical definition (G. Segal, Kontevich ≈ 1986)
Deeply connected to algebra, topology and analysis.

Complex analysis/geometry:
(∞-dim) moduli space of Riemann surfaces
Sewing=gluing=welding
Quasiconformal mappings

Our General Aim:
Provide a natural analytic setting for the rigorous definition of CFT
in higher genus. Definitions and Theorems.
Use CFT ideas (especially sewing) to prove new results in
Teichmüller theory and geometric function theory.
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Introduction Conformal Field Theory

Motivation/Application: Conformal Field Theory

ObjectsObjects Morphism
in out

A([Σ, ψ])H ⊗ H H ⊗ H ⊗ H

Functor
Projective

ψo
3

Σ

ψo
1

ψo
2

S1

S1

S1

S1

S1

ψin
1

ψin
2
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Teichmüller Theory Quasiconformal Maps

Quasiconformal Maps I

f : Ω ⊂ C → C. Homeomorphism. Orientation Preserving.
Jacobian(f ) = · · · = |fz |2 − |fz̄ |2 > 0. So, |fz̄/fz | < 1.

Complex Dilatation = µ(z) = fz̄/fz .

Jacobian(f) :

Circular Dilatation = major axis
minor axis = 1+|µ|

1−|µ|

Note: f (z) conformal ⇐⇒ fz̄ = 0 ⇐⇒ µ(z) = 0 ⇐⇒ Circ.Dil . = 1.
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Teichmüller Theory Quasiconformal Maps

Quasiconformal Maps II

f : Ω ⊂ C → C. µ(z) = fz̄/fz . Circular Dilatation = 1+|µ|
1−|µ| .

Geometric Definition:
f is K -quasiconformal if its circular dilatation is globally bounded by
K . (i.e. Infinitesimally, circles map to ellipses of bounded eccentricity).

Analytic Definition:
f is K -quasiconformal if it satisfies the Beltrami Equation

∂f
∂z̄

= µ(z)
∂f
∂z

for some µ(z) with ||µ||∞ = k < 1. K = (1 + k)/(1− k).

Note: Technical conditions skipped. QC maps are only differentiable
almost everywhere etc.
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Teichmüller Theory Riemann surfaces

Basic Objects

Riemann Surfaces with boundary

Fix: g = genus, n = # of boundary
components. The moduli space is the
space of conformal equivalence classes of
surfaces.
Quasiconformal map
Quasisymmetric map
Quasisymmetric boundary parametrization
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Teichmüller Theory Riemann surfaces

Basic Objects

Riemann Surfaces with boundary
Fix: g = genus, n = # of boundary
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surfaces.
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Definition:

h : S1 → S1

h has quasiconformal extensions to C.

Quasisymmetric boundary parametrization
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Teichmüller Theory Definition and Facts

Teichmüller Space = space of Riemann surfaces

Fix a base Riemann surface Σ.
Given Σ1 and quasiconformal f : Σ → Σ1, write (Σ, f ,Σ1).

Definition (Teichmüller space:)

T (Σ) = {(Σ, f ,Σ1)}/ ∼.

(Σ, f ,Σ1) ∼ (Σ,g,Σ2) ⇐⇒ ∃ conformal σ : Σ1 → Σ2 such that

g−1 ◦ σ ◦ f ≈ id (rel. boundary)

Teichmüller metric:

distance([Σ, f ,Σ1], [Σ,g,Σ2]) = inf
f ,g

log(circular dilatation of g ◦ f−1)

This measures how close (in the quasiconformal sense) to a conformal
map there is from Σ1 to Σ2.
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Teichmüller Theory Definition and Facts

Teichmüller space facts

Fix Σ. f : Σ → Σ1. T (Σ) = Teichmüller space.

Why?
µ(f ) = fz̄/fz is a differential form on the base surface.
Study the Teichmüller space by studying certain spaces of forms.
This is classical work from the 50’s and 60’s of Ahlfors and Bers et
al. Well developed theory.

Classical Facts:
1 T (torus) = upper half-plane.
2 If Σ is closed (with punctures) then T P(Σ) is a finite-dimensional

complex manifold.
3 If Σ is a surface with boundary then T B(Σ) is an ∞-dimensional

complex manifold.
4 Moduli space = T (Σ)/ (Mapping Class Group).
5 The moduli space is not a manifold.
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Sewing Definition

Sewing

Σ1#Σ2 = (Σ1 t Σ2)/
(
ψ1(x) = ψ2(y)

)

SEW

Σ2

ψ1

S1

S1

Σ1

Σ1#Σ2

ψ2

x

y

Note: If ψi are conformal then Σ1#Σ2 immediately becomes a
Riemann surface. This is what was previously used in CFT.
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Sewing Conformal Welding

Conformal Welding

∆ – unit disk, ∆∗ = Ĉ \ ∆̄, h : S1 → S1 (quasisymmetry)

Theorem (conformal welding:)

There exists conformal maps F1 and F2 such that F−1
2 ◦ F1 = h on S1.

Ĉ

F1

quasicircle
Ω

Ω∗

∆

∆∗ F2

h

S1

S1

David Radnell (AUS) Fiber structure of Teichmüller space Varna, June 11, 2008 11 / 15



Sewing Quasisymmetric Sewing

Quasisymmetric Sewing

ψ1 and ψ2 – quasisymmetric boundary parametrizations.
Define charts on Σ1#Σ2 by:

H2

∆∗

Σ1#Σ2

Σ2ψ−1
2 ◦ ψ1

H1
Ω∗

∆

Ω

F2

F1

Σ1
y

x

Proposition (R-S 06)
This gives the unique complex structure
on Σ1#Σ2 which is compatible with Σ1
and Σ2.
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Proposition (R-S 06)
This gives the unique
complex structure on
Σ1#Σ2 which is
compatible with Σ1 and
Σ2.
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Sewing Quasisymmetric Sewing

Holomorphicity of sewing

Key idea:
Fix τ to be a quasisymmetric boundary parametrization of Σ.
[Σ, f ,Σ1] ∈ T B(Σ) contains boundary parametrization information for
Σ1 via ψ = τ ◦ f−1.

Theorem (R-S 2006)
The sewing operations are holomorphic. That is,

T B(Σ1)× T B(Σ2)
sew−→ T B(Σ1#Σ2)

is holomorphic.
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Fiber Theorem

Cap Sewing: T B → T P

Theorem (RS 08)
1 T B is a holomorphic fiber space over T P .
2 The fibers are complex Banach manifolds modeled on
Oqc = {f : D → C | f is univalent, has qc extension, and f (0) = 0.}

ΣP

f

Sew Caps

Σ

S1

Holomorphic

[ΣP , f̃ , ΣP
1 ] ∈ T P(ΣP)

ΣP
1

[Σ, f , Σ1] ∈ T B(Σ)
Σ1

f̃

f ◦ τ

τ

p1p
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Fiber Theorem

HELP!!

In one (and several) complex variables an injective holomorphic
map automatically has a holomorphic inverse
This is not true in infinite dimensions in general.
In the Banach space setting do there exist nice conditions to
guarantee holomorphicity of the inverse?

David Radnell (AUS) Fiber structure of Teichmüller space Varna, June 11, 2008 15 / 15


	Introduction
	Overview
	Conformal Field Theory

	Teichmüller Theory
	Quasiconformal Maps
	Riemann surfaces
	Definition and Facts

	Sewing
	Definition
	Conformal Welding
	Quasisymmetric Sewing

	Fiber Theorem

