
NC Deformation of Vortexes and
Instantons

Akifumi Sako corrabolated with †Yoshiaki Maeda
Kushiro National College of Technology, Japan

† Keio University

math-ph/0612041 [to appear in J.Geom.Phys.]
arXiv:0805.3373

10th Jun. 2008 Varna

– Typeset by FoilTEX – 1



Introduction

Instanton A is defined by

F+ =
1
2
(1 + ∗)F = 0 ,

F = dA + A ∧ A: curv. 2-form , ∗ : Hodge star.
Most studies for NC instanton are
based on the ADHM method.
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ADHM construction for U(N)
N.C. instanton by ADHM (Nekrasov-Schwarz)

2 complex vector spaces V = Ck, W = CN .
ADHM data : B1, B2 ∈ Hom(V, V ),
I ∈ Hom(W,V ), J ∈ Hom(V, W ), s.t.

µR := [B1, B
†
1] + [B2, B

†
2] + II† − J †J = ~ Idk ,

µC := [B1, B2] + IJ = 0 .

Using ADHM data we can construct instanton
(A.S. -Ishikawa -Kuroki, etc.)
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[Known]:
ADHM instanton ♯ = k (same as comm. instanton)
It does not depend on the NC parameter
(A.S. -Ishikawa -Kuroki, A.S.,Furuuchi,Tian)

Can we expect that ?
1．Instanton ♯ are inv. under NC deform. in R4 ?
2.Top. charges in Y-M are preserved in Rn ??
(Vortex, Monopole and so on.)

[Unknown]:NC instantons ⇐⇒ Comm. instanton
ADHM : 1/~ expansion

⇓
Our method : ~ expansion
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Notations : Comm. relation, Moyal product

[xµ, xν]⋆ = xµ ⋆ xν − xν ⋆ xµ = iθµν, µ, ν = 1, . . . , 2n ,

(θµν): real,x-indep,skew-sym, NC parameters.

f(x)⋆g(x) = f(x)g(x)+
∞∑

n=1

1
n!

f(x)
(

i

2
←−
∂ µθ

µν−→∂ ν

)n

g(x) .

Introduce ~ and a fixed constant θµν
0 < ∞ with

θµν = ~θµν
0

We define the commutative limit by letting ~ → 0.
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The covariant derivative:

Dµ := ∂µ + iAµ ,

The curvature two form F :

F :=
1
2
Fµνdxµ ∧ ⋆dxν = dA + A ∧ ⋆A

where ∧⋆ is defined by

A ∧ ⋆A :=
1
2
(Aµ ⋆ Aν)dxµ ∧ dxν.
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(1) NC Instanton Construction

Consider the Yang-Mills theory on the NC R4

Formally we expand A as

Aµ =
∞∑
l=0

A(l)
µ ~l
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Using

P :=
1 + ∗

2
; Pµν,ρτ =

1
2
(δµρδντ − δνρδµτ + ϵµνρτ),

and covariant derivatives associated to A
(0)
µ by

D(0)
µ f := ∂µf + i[A(0)

µ , f ], DA(0)f := d f + A(0) ∧ f

l-th order Instanton Eq.

P µν,ρτ
(
D(0)

ρ A(l)
τ − D(0)

τ A(l)
ρ + C(l)

ρτ

)
= 0

P (DA(0)A
(l) + C(l)) = 0.
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where

C(l)
ρτ :=

∑
(p; m,n)∈I(l)

~p+m+n 1
p !

(
A

(m)
[ρ (

←→
∆ )pA

(n)
τ ]

)
←→
∆ ≡ i

2
←−
∂ µθ

µν
0
−→
∂ ν.

I(l) ≡ {(p; m,n) ∈ Z3|p + m + n = l, m ̸= l, n ̸= l}.

Note that :
• C

(l)
ρτ is consisited of A(k) (k < l). i.e. given fun.
We determine A(l) recursively.

• 0-th order is the comm. instanton Eq.
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Asymptotic behavior of comm. instanton A
(0)
µ

A(0)
µ = gdg−1 + O(|x|−2), gdg−1 = O(|x|−1),

where g ∈ G and G is a gauge group.
Fix A(0) and impose a condition for A(l)(l ≥ 1) as

A − A(0) = D∗
A(0)B , B ∈ Ω2

+,

where D∗
A(0) is defined by

(D∗
A(0))µν

ρ Bµν = δν
ρD

(0)µBµν − δµ
ρD

(0)νBµν.

to deform the Eq. into elliptic DE.
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We expand B in ~ as B =
∑

B(k)~k.
Using the fact that the A(0) is anti-selfdual,

2D2
(0)B

(l)µν + P µν,ρτC(l)
ρτ = 0, : Main Eq.

where
D2

(0) ≡ Dρ

A(0)DA(0)ρ .

Let’s solve the Main Eq. by the Green’s fun. of D2
(0).

D2
(0)G0(x, y) = δ(x − y),
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G0(x, y) was constructed (Corrigan et.al)

G0(x, y) =
[v1(x) ⊗ v2(x)]†(1 − M)[v1(y) ⊗ v2(y)]

4π2(x − y)2 .

Here M and v1, v2 are determined by the ADHM data
and vi is a bounded function. (Comm. Instanton has
1 to 1 corresp. with ADHM) Then,

B(l)µν = −1
2

∫
R4

G0(x, y)P µν,ρτC(l)
ρτ (y)d4y
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and the NC instanton A =
∑

A(l) is given by

A(l) = D∗
A(0)B

(l).

The key fact to get the main result is

G0(x, y) = O(|x − y|−2) , |x − y| >> 1 .

Using this, we can prove

|A(l)| < O(|x|−3+ϵ), ∀ϵ > 0
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(2) Proof: Instanton ♯ is indep. of ~

The first Pontrjagin number is defined by

I~ :=
1

8π2

∫
tr F ∧ ⋆F.

We rewrite this as Cycl. Sym. Break.↓

1
8π2

∫
tr d(A ∧ ⋆dA +

2
3
A ∧ ⋆A ∧ ⋆A+) +

1
8π2

∫
trP⋆
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∫
trP⋆ is typically written as∫

Rd
tr(P ∧ ⋆Q − (−1)n(4−n)Q ∧ ⋆P ).

P and Q are an n-form and a (4 − n)-form
The term of order ~ is given by∫

R4
tr{~θµν

0 (∂µP ∧ ∂νQ)}

∼
∫

R4
ϵµ1µ2µ3µ4tr d{(∗θ) ∧ (Pµ1...µndQµn+1...µ4)}
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∼
∫

R4
ϵµ1µ2µ3µ4tr d{(∗θ) ∧ (Pµ1...µndQµn+1...µ4)}

where ∗θ = ϵµνρτθ
ρτdxµ ∧ dxν/4 .

These integrals are zero if
Pµ1...µndQµn+1...µ4 is O(|x|−(4−1+ϵ)) (ϵ > 0).

Similarly, higher order terms are written as total div.
Hence vanish under the decay hypothesis.

=⇒
∫

trP⋆ = 0.
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From these and |A(l)| < O(|x|−3+ϵ),

1
8π2

∫
trF ∧ ⋆F =

1
8π2

∫
trF (0) ∧ F (0),

Summarizing the above discussions,

Theorem 1. Let A
(0)
µ be a comm. instanton in

R4. There exists a formal NC instanton Aµ =∑∞
l=0 A

(l)
µ ~l such that the instanton number is

independent of the NC parameter ~ .
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(3) Deformation of Vortex

Review the Abelian-Higgs model in com. R2

ϕ: a complex scalar field
G: U(1) gauge group
Complex coordinates : z = 1√

2
(x1 + ix2) ,

Complex gauge fields by A = 1√
2
(A1 − iA2) ,

Curvature : Fzz = Fz̄z̄ = 0 , Fzz̄ = iF12 = ∂Ā − ∂̄A
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We define the magnetic field

B := −iFzz̄ .

The Vortex Eqs.:

D̄ϕ = (∂̄ − iĀ)ϕ = 0 , B + ϕϕ̄ − 1 = 0 .

The vortex number,

N0 :=
1
2π

∫
d2xB0 ∈ Z
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Theorem[Taubes]
For a smooth, finite vortex.

|ϕ0| ∼ 1 − Ce−r(1−ϵ)

|∂ϕ0| ∼ |∂̄ϕ0| ∼ C ′1
r

|A0| ∼ C ′′1
r

.

where r = |x|.
Let’s investigate the NC deformations of this theory.
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The NC Abelian Higgs Model

[xµ, xν] = i~ϵµν, µ, ν = 1, 2 ,

Fzz̄ = iF12 = ∂Ā − ∂̄A − i[A, Ā]⋆ ,

The NC vortex Eqs.

D̄ ⋆ ϕ = (∂̄ − iĀ) ⋆ ϕ = 0 , B + ϕ ⋆ ϕ̄ − 1 = 0 .

The formal expansions of the fields:

ϕ =
∞∑

n=0

~nϕn(z, z̄) , A =
∞∑

n=0

~nAn(z, z̄) .
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The k-th order equations:

− i(∂Āk + ∂̄Ak) + ϕkϕ̄0 + ϕ0ϕ̄k − δk0 + Ck(z, z̄) = 0
∂̄ϕk − iĀkϕ0 − iĀ0ϕk + Dk(z, z̄) = 0.

Here Ck(z, z̄) and Dk(z, z̄) are composite functions
of lower order An, ϕn

In particular in the case of k = 0, these are comm.
Vortex Eqs.
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Setting

φk :=
ϕk

ϕ0
+

ϕ̄k

ϕ̄0
= 2Re

(ϕk

ϕ0

)
and dk =

Dk

ϕ0
,

Vortex Eqs. are simplified as

(−∆ + |ϕ0|2)φk = Ek

where
Ek := −Ck + ∂dk − ∂̄d̄k.
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NC Vortex Number

Let’s see conditions which preserve the vortex
number under a NC deformation.

Theorem 2. If 1
2π

∫
d2xB0 = N0 and

|ϕk| < Cr−ϵ, |∂rϕk| < Cr−ϵ+1, then

1
2π

∫
d2xB = N0 .

We can prove this by using asymptoric behavior of
commutative vortex.
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(4) Proof that Vortex ♯ is preserved

The Schrödinger equation and Vortex Solutions

To show that there exists a unique NC vortex solution
deformed from the Taubes’ vortex, consider the
Schrödinger equation

(−∆ + V (x))u(x) = f(x)
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Assumptions for V (x)

(a1) V (x) ≥ 0 , ∀x ⊂ R2

(a2) ∃K ⊂ R2 and ∃c > 0 s.t. K is a compact and

for x ∈ R2\K , V (x) ≥ c

(a3) ∃x1, . . . , xN ∈ R2 s.t. V (xi) = 0, V (x) > 0
for x ̸ ∈{x1, . . . , xN}

(a4) ∀ α = (α1, α2) ∈ Z2
+, ∃ Cα

such that |∂α
x (V − c)| ≤ Cα for any x ∈ R2

Note that our system satisfies (a1) − (a4).
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We set

Hl(n) := {f | ||f || : = sup
x∈R2

(1 + |x|n)|∂α
xf(x)| < ∞

for any |α| ≤ l}

From standard way of Green’s function, we can prove
the following
Theorem 3. Under the assumptions (a1) − (a4),
there exists a unique solution u ∈ Hl(n) of
(−∆ + V (x))u(x) = f(x) for any f ∈ Hl(n).

Vortex Eq. (−∆ + |ϕ0|2)φk = Ek is a particular
example.
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These 2 theorems imply the following theorem.

Theorem 4. (A0, ϕ0) satisfy the Vortex Eqs.
Then there exists a unique solution (A,ϕ)
of the NC vortex equations with A|~=0 =
A0, ϕ|~=0 = ϕ0, and its vortex number is
preserved:

N = N0 , i.e.
1
2π

∫
d2x B =

1
2π

∫
d2x B0 .
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[Outline of the Proof]
(1) We found V (x) = |ϕ0|2 satisfies (a1) − (a4).
From asympt. behavior, E1 ∈ H∞(4).
(2) If Ei ∈ H∞(2i+2), as a result of asym. behavior
estimation, there exist unique solutions φ1, . . . , φk−1.
(3) Then we find Ek ∈ H∞(2k + 2). Therefore
Ek ∈ H∞(2k + 2) is proved for arbitrary k.
(4) Theorem 3 is applicable to (−∆+ |ϕ0|2)φk = Ek
for arbitrary k, then it is shown that each φk is
determined uniquely and φk ∈ H∞(2k + 2)
(5) Finally, Theorem 2 imply that N = N0.

¤
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(5) Conjectures and Open problems

Conjecture: The instanton numbers in Euclidean
4-space are invariant under NC deformation.
Furthermore Top charges might be preserved under
the NC deformation for any other solitons in gauge
theories in Euclidean spaces.

Open problem:
“Which instantons (solitons) preserve their instanton
number (Top charge) under NC deformation?”
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Hint

1 Hint has already appeared ?

The key point is the vol. of the space is ∞, in the
previous proofs to show the Top. charges are not
deformed.

⇓

Therefore it is natural to expect that
instanton ♯ depends on the NC parameter in a finite
vol. NC space.
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Example: Instanton ♯ on NC Torus
Instanton on T 4 for U(N 2) gauge theory

D1 = ∂1, D2 = ∂2 +
1
2

k

N
(x11N) ⊗ 1N ,

D3 = ∂3, D4 = ∂4 −
1
2

k

N
(x31N) ⊗ 1N ,

The instanton number is given by k2.

After NC deformation, the instanton number is also
deformed to

1
8π2

∫
T4

tr F ∧ ⋆F =
k2N 2

(N − k~)2.
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