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Translation surfaces in E3

Darboux surfaces

Cartesian parametrization: x
y
z

 = A(v)

 f (u)
g(u)
h(u)

+

 a(v)
b(v)
c(v)


where A(v) ∈ O(n)

A Darboux surface represents a union of ”EQUAL” curves (i.e. the
image of one curve1, obtained by isometries of the space.

1

generatrix
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Translation surfaces in E3

Darboux surfaces

1 A = I3 : translation surfaces

2 A = matrix of rotation (axe and angle are fixed), a = b = c = 0 :
rotation surfaces

3 A = matrix of rotation (axe n̄ and angle are fixed), (a,b, c) = vn̄ :
helicoidal surfaces

If the generatrix is
- a straight line : ruled surfaces
- a circle : circled surfaces including e.g. tubes
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Translation surfaces in E3

Tubes

r(s, t) = γ(t) + cos s N(t) + sin s B(t)

Figure: tube

r(s, t) = γ(t) + A(t) S1
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Translation surfaces in E3

Translation surfaces

Translation surface = ”sum” of two curves

Figure: translation surface
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Translation surfaces in E3

Translation surfaces

If the two curves are situated in orthogonal planes

(x , y , z) 7−→ (x , y , f (x) + g(y))

Examples:

1 planes

2 cylinders
3 hyperbolic and elliptic paraboloids
4 the egg box surface
5 Scherk surface
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Translation surfaces in E3

Egg box surfaces

(
x , y ,a

(
sin

x
b

+ sin
y
b

))

Figure: egg box surface
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Translation surfaces in E3

Scherk surfaces

(
x , y ,a log

cos x
a

cos y
a

)

Figure: Scherk surface
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Translation surfaces in E3

Scherk surface - art

... much more beautiful

Figure: Scherk surface
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Translation surfaces in E3

Second fundamental form

ON THE GEOMETRY OF THE SECOND FUNDAMENTAL FORM
OF TRANSLATION SURFACES IN E3

joint work with A. I. Nistor : arXiv:0812.3166v1 [math.DG]

M surface in E3

I = the first fundamental form – intrinsic object
II = the second fundamental form – extrinsic tool to characterize the
twist of M in the ambient

II is a metric if and only if it is non-degenerate
curvature properties associated to II:
S. Verpoort, The Geometry of the Second Fundamental Form:

Curvature Properties and Variational Aspects,
PhD. Thesis, Katholieke Universiteit Leuven, Belgium, 2008
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Translation surfaces in E3

Second fundamental form

Lemma (Dillen, Sodsiri - 2005)

The second fundamental form II of M is non-degenerate if and only if
M is non-developable.

second Gaussian curvature KII =⇒ II-flat
second mean curvature HII =⇒ II-minimal

Remark (Verpoort - 2008)

Critical points of the area functional of the second fundamental form
are those surfaces for which the mean curvature of the second
fundamental form HII vanishes.
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Translation surfaces in E3

Old

and recent

results

Koutroufiotis - 1974: a closed ovaloid with KII = cK , c ∈ R or if
KII =

√
K is a sphere

Koufogiorgos & Hasanis - 1977: the sphere is the only closed
ovaloid satisfying KII = H

Baikoussis & Koufogiorgos - 1997: helicoidal surfaces with

KII = H
(locally)⇔ constant ratio of the principal curvatures

Blair & Koufogiorgos - 1992: minimal surfaces have vanishing
second Gaussian curvature but not conversely

Kim & Yoon - 2004, Sodsiri - 2005, Yoon - 2006 extends the study for
3-dimensional Lorentz-Minkowski spaces and for different relations
between H, K , HII and KII
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Translation surfaces in E3

II-flat translation surfaces in E3
1

Theorem (Goemans, Van de Woestyne - 2007)

If a translation surface in E3
1 parametrized by x̄(s, t) = (s, t , f (s) + g(t))

has KII = 0, then

f (s) =
∫

F−1(s + d)ds and g(t) =
∫

G−1(t + m)dt

with F and G real functions determined by

F (x) =
∫ x2

ax4+bx2+c dx and G(x) =
∫ x2

−ax4+(2a+b)x2−a−b−c dx ,

and a,b, c,d şi m real numbers.

Marian Ioan MUNTEANU (UAIC) On the geometry of translation surfaces Varna, June 2009 14 / 39



Translation surfaces in E3

II-flat PT surfaces in E3

polynomial translation surfaces (in short, PT surfaces) : translation
surfaces for which f and g are polynomials

Theorem (M., Nistor - 2009)

There are no II-flat polynomial translation surfaces in E3.
Proof.

KII =
1

(|eg| − f 2)2

0
BBB@

���������

− 1
2 evv + fuv − 1

2 guu
1
2 eu fu − 1

2 ev

fv − 1
2 gu e f

1
2 gv f g

���������
−

���������

0 1
2 ev

1
2 gu

1
2 ev e f

1
2 gu f g

���������

1
CCCA
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Translation surfaces in E3

II-flat PT surfaces in E3

(cont.)

KII =
num

4α′β′∆3/2

where

num = −2α(u)2α′(u)2β′(v)− 2α′(u)β(v)2β′(v)2+
2α(u)2α′(u)β′(v)2 + 2α′(u)2β(v)2β′(v)+

2α′(u)β′(v)2 + 2α′(u)2β′(v)+
α′(u)β(v)β′′(v) + α(u)α′′(u)β′(v)+

α(u)2α′(u)β(v)β′′(v) + α(u)α′′(u)β(v)2β′(v)+
α′(u)β(v)3β′′(v) + α(u)3α′′(u)β′(v).
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Translation surfaces in E3

II-flat translation surfaces

example given by Blair & Koufogiorgos - 1992 : II-flat non-minimal
translation surfaces, involving power functions, i.e.

α = aup and β = bvq with a,b ∈ R, a,b 6= 0 and p,q ∈ Q.

Proposition (M., Nistor - 2009)

The only II-flat translation surfaces with f and g power functions can
be parametrized by

r(u, v) =
(

u, v , c(u
4
3 − v

4
3 )
)
, c ∈ R∗.
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

KII = H

{A,B} - generalized Weingarten surfaces : Dillen, Sodsiri - 2005

Theorem (M., Nistor - 2009)

The only translation surfaces with non-degenerate second
fundamental form having the property KII = H are given, up to a rigid
motion of R3, by

r(u, v) =

(
u, v ,

2
c

log

∣∣∣∣cos cu
2

cos cv
2

∣∣∣∣ ) , c ∈ R∗.

More, we notice the parametrization of a Scherk type surface, so we
have

KII = H = 0.
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

KII = λH, λ 6= 1, 2

Theorem (M., Nistor - 2009)

The only {KII ,H}–generalized Weingarten translation surfaces with
non-degenerate second fundamental form satisfying KII = λH with
λ ∈ R \ {1,2}, are given, up to a rigid motion of R3, by the
parametrization

r(u, v) =

(
u, v ,

1
p

log

∣∣∣∣ cos(pv + r)
cos(pu + q)

∣∣∣∣), where p 6= 0 and r ,q ∈ R

which represents a Scherk type surface. Moreover KII = H = 0.
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

KII = 2H

Theorem (M., Nistor - 2009)

The only translation surfaces with non-degenerate second fundamental form
having the property KII = 2H are given, up to a rigid motion of R3, by the
following parametrizations

i) Case 1.

r(u, v) =

�
u, v ,−

ν

2
log
�

sinh(pu)
1

p2 cos(qv)
1

q2

��

r(u, v) =

�
u, v ,−

ν

2
log
�

cosh(pu)
1

p2 cos(qv)
1

q2

��

Case 2.

r(u, v) =

0
@u, v ,

ν

2
log

cos(pu)
1

p2

cos(qv)
1

q2

1
A
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

KII = 2H

i) Case 3.

r(u, v) =

0
@u, v ,−

ν

2
log

sinh(pu)
1

p2

sinh(qv)
1

q2

1
A r(u, v) =

0
@u, v ,−

ν

2
log

cosh(pu)
1

p2

cosh(qv)
1

q2

1
A

r(u, v) =

0
@u, v ,−

ν

2
log

cosh(pu)
1

p2

sinh(qv)
1

q2

1
A r(u, v) =

0
@u, v ,−

ν

2
log

sinh(pu)
1

p2

cosh(qv)
1

q2

1
A .

ii)
r(u, v) = (u, v ,a(u − u0)

2 − a(v − v0)
2), a,u0, v0 ∈ R

hyperbolic paraboloid.

iii) combinations of the previous functions in (i) and a second order
polynomial (as in (ii), for a certain a)
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

Figures

r(u, v) = (u, v , log(sinh u cos v))

r(u, v) = (u, v , log(cosh u cos v))
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Translation surfaces in E3 {KII , H} - Generalized Weingarten translation surfaces

Figures

r(u, v) =

(
u, v , log

cosh u
cosh v

)
r(u, v) =

(
u, v , log

sinh u
cosh v

)
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Translation surfaces in E3 II-minimality

II-minimal surfaces

Haesen, Verpoort, Verstraelen - 2008

HII = −H − 1
4
∆II log(K )

where ∆II is the Laplacian for functions computed with respect to the
second fundamental form as metric. HII can be equivalently expressed
as

HII = −H − 1

2
√

det II

∑
i,j

∂

∂ui

(√
det II hij ∂

∂uj (log
√

K )

)
.
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Translation surfaces in E3 II-minimality

II-minimal translation surfaces

(u, v) 7→ (u, v , f (u) + g(v)); α = f ′, β = g′

HII = 0 is equivalent to

(1 + α2)β′ + (1 + β2)α′ − 4
(1 + α2 + β2)2 +

α′′′α′ − 2α′′2

2α′4
+
β

′′′
β′ − 2β′′2

2β′4
= 0

After STRAIGHTFORWARD COMPUTATIONS it follows
α′ = 0, β′ = 0 which cannot occur since II is no longer invertible

Theorem (M., Nistor - 2009)

There are NO II-minimal translation surfaces in Euclidean
3-space.
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Translation surfaces in the hyperbolic space H3

General things

R. López : arXiv:0902.4085v1 [math.DG]

H3 hyperbolic space : upper half-space R3
+

ds2 = 1
z2

(
dx2 + dy2 + dz2

)

the absence of an affine structure does not permit to give an intrinsic
concept of translation surface as in E3 =⇒ sum of planar curves

x , y are interchangeable, but not with z
type 1 : r(x , y) = {x , y , f (x) + g(y)}
type 2 : r(x , z) = {x , f (x) + g(z), z}

Notice that there are NO isometries of H3 that carry surfaces of type 1
into surfaces of type 2 or vice-versa.
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Translation surfaces in the hyperbolic space H3

Minimal translation surface

Recall: in E3 =⇒ planes and Scherk surface

Known fact: Examples of minimal surfaces in H3: totally geodesic
planes, minimal graphs (corresponding to Dirichlet problem)

Theorem (López - 2009)

There are NO minimal translation surfaces in H3 of type 1.
The only minimal translation surfaces in H3 of type 2 are totally
geodesic planes.
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Translation surfaces in the Heisenberg group Nil3

Nil3
Heisenberg group Nil3 ∼ R3

(x1, y1, z1) · (x2, y2, z2) :=
(

x1 + x2, y1 + y2, z1 + z2 +
1
2

(x1y2 − x2y1)
)

g = dx2 + dy2 +
[
dz +

1
2

(ydx − xdy)
]2

rich properties: homogeneous space, the group of isometries has
dimension 4, contact Riemannian structure

Lie algebra of Iso(Nil3) is generated by Killing v. f.

E1 =
∂

∂x
+

y
2
∂

∂z
E2 =

∂

∂y
− x

2
∂

∂z

E3 =
∂

∂z
E4 = −y

∂

∂x
+ x

∂

∂y
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Translation surfaces in the Heisenberg group Nil3

Nil3

E4 generates the group of rotations around z-axis ∼ SO(2)

G1 = {(t ,0,0)|t ∈ R}, G2 = {(0, t ,0)|t ∈ R}, G3 = {(0,0, t)|t ∈ R}

Definition (Figueroa, Mercuri, Pedrosa - 1999)

A surface in Nil3 is translation invariant if it is invariant under the action
of 1-parameter subgroup generated by a Killing vector field of the form
a1E1 + a2E2 + a3E3 , a2

1 + a2
2 + a2

3 6= 0.

Proposition (Figueroa, Mercuri, Pedrosa - 1999)

Let M in Nil3 be invariant under the 1-parameter group generated by

a1E1 + a2E2 + a3E3 , a2
1 + a2

2 6= 0.

Then is it equivalent to a surface invariant under G1.
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Translation surfaces in the Heisenberg group Nil3

Flat translation invariant surfaces

translation invariant surfaces : restrict to G1 and G3

Proposition (Inoguchi - 2005)

Let M be a surface invariant under G3 = {(0,0, t) : t ∈ R}. Then M is
locally expressed as

(0,0, v) · (x(u), y(u),0) , u ∈ I, v ∈ R.

I - open interval, u - arclength parameter

Remark 1. (x , y ,0) and (0,0, v) commute.
Remark 2. M is flat
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Translation surfaces in the Heisenberg group Nil3

Flat translation invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surface invariant under G1 = {(t ,0,0) , t ∈ R}. Then M is
flat if and only if il is locally equivalent to the graph of

f (x , y) =
xy
2

+
1

2A

[
y
√

y2 − A2 − A2 log |y +
√

y2 − A2|
]
, A ∈ R∗.

Proof.

idea: the translation invariant surface (G1) is locally parametrized as
the graph

(x ,0,0) · (0, y , v(y)) =
(

x , y , v(y) +
xy
2

)
.

compute K + solve ODE
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Translation surfaces in the Heisenberg group Nil3

Minimal G1 - invariant surfaces

Proposition (Inoguchi - 2005)

Let M be a surfaces invariant under G1 = {(t ,0,0) , t ∈ R}. Then M is
minimal if and only if il is locally equivalent to the graph of

f (x , y) =
xy
2

+ a
[
y
√

1 + y2 + log(y +
√

1 + y2)

]
, a ∈ R∗.

Extensions: using translation to the right for curves in the xz-plane and
yz-plane : no flatness results
Why nothing about G4?
G4 invariant surfaces are nothing but rotational surfaces around z-axis
(G4 = SO(2))
Classification results: Caddeo, Piu, Ratto - 1996
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Translation surfaces in S3

”Sum” of two curves

work in progress with Rafael López

S3 hypersurface in R4 ≡ H (noncommutative field of quaternions)
S3 group of unit quaternions

α(s), β(t) curves on S3 (parametrized by arclength)

translation surface: r(s, t) = α(s) · β(t)

Example (well known)

r(s, t) = (cos s cos t , sin s cos t , cos s sin t , sin s sin t).

• α = (cos s, sin s,0,0), β(t) = (cos t ,0, sin t ,0): translation surface
• minimal and II-minimal
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Translation surfaces in S3

Generalities

From now on FIX α(s) = (cos s, sin s,0,0).

β(t) ∈ S3: ∃ q = q(t) ∈ S2 ⊂ ImH s.t. β′(t) = β(t)q(t)

g = ds2 + 2Fdsdt + dt2, F = 〈ir , rq〉
N = jζr , ζ ∈ S1 ⊂ C
〈ad(r)(q), jζ〉 = 0

there exists x ∈ (0,1) depending on s and t such that

N = ± 1√
1− x2

(xr + irq)

ad(r)(q) = xi ±
√

1− x2 ijζ.

The function x does not depend on s!!
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Translation surfaces in S3

First results

Proposition (López, M. - 2009)

The surface S is flat.

Example (the easiest: q′ = 0)

β(t) = (cos t , sin t sin θ0, sin t cos θ0 cosψ0, sin t cos θ0 sin θ0).

Proof.

∂

∂t
ad(r)(q) = ad(r)(q′) β′(t) = ξ0β(t)

ξ0 = sin θ0 i + jw0, w0 ∈ C, |w0| = cos θ0, θ0 ∈
(
−π

2
,
π

2

)
.

Remark. All these surfaces are minimal.
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Translation surfaces in S3

Other results

Recall N = jζr , ζ ∈ S1 ⊂ C

ζ = cosϕ+ sinϕ i , ϕ = ϕ(s, t)

Weingarten operator : A =

 − x√
1− x2

1 + xϕt√
1− x2

1√
1− x2

− x + ϕt√
1− x2



Proposition (López, M. - 2009)

The surface S cannot be totally geodesic in S3.
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Translation surfaces in S3

Minimality

Proposition (López, M. - 2009)

The surface S is minimal if and only if ϕ(s, t) = −2
(
s +

∫
x(t)dt

)
.

Moreover

ad(r)(q) = x i −
p

1 − x2

�
− sin

�
2
Z

x(t)dt + 2s
�

j + cos
�

2
Z

x(t)dt + 2s
�

k
�

where x = x(t) is a smooth function.

Difficulties: In order to give an explicit expression for β we have to
solve the following QODE

β′(t) = µ(t)β(t) , µ(t) is known
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Proposition (López, M. - 2009)

The surface S is minimal if and only if ϕ(s, t) = −2
(
s +

∫
x(t)dt

)
.

Moreover

ad(r)(q) = x i −
p

1 − x2

�
− sin

�
2
Z

x(t)dt + 2s
�

j + cos
�

2
Z

x(t)dt + 2s
�

k
�

where x = x(t) is a smooth function.

Difficulties: In order to give an explicit expression for β we have to
solve the following QODE

β′(t) = µ(t)β(t) , µ(t) is known

Marian Ioan MUNTEANU (UAIC) On the geometry of translation surfaces Varna, June 2009 37 / 39



Problem

Find a 3-dimensional space and an embedding such that the following
object becomes II-minimal or II-flat
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Ceramic joke

Find a 3-dimensional space and an embedding such that the following
object becomes II-minimal or II-flat
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THANK YOU

FOR

ATTENTION !
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