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Schur-Weyl duality — a connection between representations of the sym-
metric group S, (the group of permutaitons of n elements) and repre-
sentations of the linear group GL(d) = AutL, dmL =d

Natural differential operators: R(g) — the Riemann tensor, W(g) — the
Weyl conformal tensor, N'(J) — the Nijenhuis tensor, d(w) — the external
differential, etc.

In the symbols of these operators, there are algebraic structures coming
from the Schur-Weyl description of GL(d)

Basic example: R(g)



M — manifold, T'(M), T*(M) — tangent and cotangent bundles
g € C®(S2(T*(M))) — metric with (some) fixed signature
¢ € Diff (M) — diffeomorphism
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¢:g— ¢ (@ (r) = 9ap(P(z))

g1~ g <<= 3d¢:¢%(91) =92

If go is flat, R(g1) # O is an obstruction for the equivalence g1 ~ g»



Obstruction for local equvalence

Let zg € M be a given point, (z#) coordinates centered at zg, The group
Diff (M) of all diffeos ¢ of M such that ¢(xzg) = zg plays a crucial role
in the study of the local equivalence of metrics at zg.

Diffz4(M) has a natural action on the j& (g):

ik () = 3k (6%(9)) == R (@) GE (9)) -
If there exists ¢ € Diff;,(M) such that ¢*(g1) = g2, then

i) (o (91)) = da (92)

i.e., jk (g91) and j% (go) lie in the same orbit of Diffy,(M). If jk& (g1)
and j!,fo(gg) belong to different orbits, then they are not equivalent in a
neigborhood of zg.

Therefore, we study the space of orbits of Diff;,(M) on the space of
k-th jets of metrics and look for the canonical projection.



We start with £k =0,1,2,... and look for the lowest k for which there is
more than one orbit of Diffy,(M).

We work in the centered coordinates: x#(xg) = 0, and use the notation
i&(g) == jr.(9).

Case k= 0: 78(9) pr = g (0) =: Guv,
G D($)|wo 7 D(d)1, -

All metrics of the same signature in a vector space are equivalent, so
there is no obstruction at this level.



Case £ =1: Fix gy, consider metrics with 1-jets starting with g,u:
jO(Q)uV = Juv + Guv,a ™ .
Without loss of generality,
L \P — P L BP0 P
]O(Cb) () =2 + aB®T T
Bgﬁ symmetric in « and 5. With this choice,
guv — Guv
g,uz/,oz = g,uu,a + B,u,z/a + BI/,,LLOé 3

In a coordinate-free picture, we have a map
F:L®S%(L)— S?(L)®L: F(B)uva = Buva + Buja .
T his action is

SQ(L) ® L > g,uy,a L g,uv,a ‘I'\/T(B)uu,oz , B € L@SQ(L) .



F . L® SQ(L) > SQ(L) ® L : f(Bﬂ,ya) = Bu,va + Bu,ua

S?2(L)®L>§ — g+F(B), BelL®S?(L)

F is surjective, so (SQ(L) ® L) /F(L) = {0}, hence at level £k = 1 there
is no obstruction. Therefore, there exist normal coordinates (“Riemann
coordinates” ) in which the derivatives of the metric tensor vanish at xg:

8g,u;/
oxP

=0.
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Case k =2: Fix the 1-jet j3(9)w = Guv + 0, i.e., we work in Riemann

o
normal coordinates at zg, where ag“p'/ = 0, and consider the jets j8(g)
Xr a’,‘O
over this 1-jet:
. - 1_
](2)(9)pw = guv + Eg,ul/,ozﬁ z® 2 3
where § _ g Without loss of generality
9/1’7/7046 T 83304 8:55 xo. ’

: 1
(@) (x) =aP +0+ By a®ala’

and the action is
Guv — Guv
O — O

Iuv,ap = GuraB T Buyap T Bupas



In a coordinate-free picture, we have a map
F:L®S3 (L)~ S2(L)®S?*(L) : F(B)yyop = Buvap + Bujas -
T his action is
SQ(L) %Y SQ(L) = g,uy,ozﬂ = g,uy,aﬁ +f(B)uu,aB ) BelL® S3(L) .
The map F : L&S3(L) — S2(L)®S?(L) is not surjective: for dim(L) = 4,
dim <L® 53(L)) =80 , dim (SQ(L) ® SQ(L)> =100 ,
and we must find the natural projection

N:S2(L) ®S%(L) — (S*(L) ® S2(L)) /F (L® S3(L)) .

We will use the Schur-Weyl duality. Let S;,, be the symmetric group,
A=(1,.. ., 2, [ Al =X1+---+ A, =n be a partition of n. Graphically,
this is a Young diagram. Each Young diagram is associated with an
irreducible representation of S,, denoted by V(A) (“Specht module”);
dimV (X)) =: N(N).



Let L be a linear space of dimension d. In L®" there is a natural
representation of GL(d), which is generally reducible. A standard tableau
on the diagram A (with |A| = n) is the numbering of the boxes in the
diagram with the entries from 1 to n, each ocurring once, and increasing
across each row and each column.

With each standard tableau T'(\) is associated a Young projection op-
erator P(\) : L®" — L®" The image P(A)(L®?) =: L(\) is an invariant
subspace of GL(d) and realizes an irreducible representation of GL(d).

The representation of GL(d) in L®" is a direct sum of irreducible repre-
sentations V() with multiplicities N (\):
"= P NNV .
[Al=n
In the case n = 2, this is simply

L®L=Ly® L) =S*(L) N (L) .



In the case n = 4, d = 4,
4
L¥ =Ly ®&3L(31)®2L22)®3L211)®L(11.1.1) 5

256 = 35 + 3(45) + 2(20) + 3(15) + 1 .

The tensor product of two irreps is a direct sum:

Loy®Ly= @D  Capol)
=X+

where Cy , » are the so-called Littlewood-Richardson numbers.
In our case,

LS (L) = Lay®Le) = Lay®La
S*(L) ® S*(L) Lioy® Loy = La)y® L31)® L22)
so in these notations the map F : L ® S3(L) — S2(L) ® S?(L) becomes

FiLay®Lea) = Lay® L)@ Loy -



The map F is a splitting operator, therefore its kernel and image are
invariant. In our case, ker F = {0}, and the image of F must be

Lay® L) © Lay@Leny®Lloy)-
T herefore, the Young projector

P2y La)y® L) ® L) = L)

is the canonical projection we needed. Therefore, the projector P(272)
for the Young tableau

113
214

is the symbol of the Riemann tensor R(g) considered as a differential
operator.



