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1. Introduction
e Kaup-Kuperschmidt equation
O f = 02 f +10f0% f + 250, f02 f +20f20, f,
where f € C*°(R?).
e Lax representation

L =10, + q(x,t) — AJ,

5
M =0+ ) Vi(z,t)A*,

k=0
where
w0 0 010
g=100 0 |, J=1001
00 —u 100
w and f are interrelated by a Muira transformation as follows
1
f=—i0,u + §u2.
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The Lax pair is associated with the algebra sl(3, C) with additional
symmetries (reductions) imposed = Caudrey-Beals-Coifman sys-
tem.

Purpose of the talk: to demostrate how the generalized Fourier
interpretation of the inverse scattering method for equations of the
Kaup-Kuperschidt type can be achieved.
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2. Some facts from the theory of solitons

e NEE and Lax pairs

NEE &  [L(\),M(\)] =0,

All quantities g(x,t) and Vi (x,t) belong to a simple Lie algebra g
while J € b is real. We shall require that the potential ¢ fulfills the
condition

lim |z|'q(x,t) =0, leZ™.

xr— +00
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e Direct scattering problem

— Auxiliary spectral problem (generalized Zakharov-Shabat sys-
tem)

Ly = (10, + q(x,t) — AJ)(x,t, A) = 0.
Then fundamental solutions v take values in G corr. to g.
— Continuous spectrum of L: R C C.

— Jost solutions

lim 4 (x, \)e™M?® = 1.

T —=+ 00
— Scattering matrix (data)
TN =y (z, t, o_(z,t,)),  XeR,
— Dispersion law = evolution of scattering data

0,7+ [f(\),T] =0,  f(\) = lim V(x,t,\)

xr— + 00
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— Fundamental analytic solutions
X (@A) = - (2, )8 (A) = ¢y (2, ) TF(A) DT,

where ST (\), T%(\) and D*()\) are factors in the Gauss de-
composition of T'(\)

_ [T ()DFN)STW),
T = {T+()\)D—()\)§_()\).

Hence we have (Riemman-Hilbert problem)

A), A€ER,

e Algebraic reductions

Let Gr be a discrete group acting on the set fundamental solutions
{op(x, \)} as follows

Kl (2, k7 N)] = d(a, N).
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The requirement of G g-invariance of the lin. problem yields to
certain symmetry conditions on U (and therefore on V).

Example 1 Cozeter type reduction for sl(r + 1,C)

Impose the Z.,11 reduction condition

Cly(z, s~ WO = (x, \)

where

2i7

K1 A— WA, Ww=ertl, C = diag(1,w",w" 1. | w).

Thus the symmetry conditions for U and V' read

CU(z,w *NC™! = Uz, )\ = Cq(z)C™' =q(z), CJC'=uwl,
CV(z,w *N)C™t = Vi(x,\) =  CVi(2)0™! = Vi (2).

Consequently q(x) and J have the form

¢=>_ a.H, J=) E..
k=1

aceA
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3. NEE of the Kaup-Kuperschmidt type

Lax operators
L(\) = i0; + q(x,t) — \J,
N
M(A) =10+ ) Vi(z,)A*,  N#£3l, lez?
k=0

where ¢, J and Vi belong to s[(3,C). Impose the additional Z3
Coxeter type reduction conditions

CqCt =¢q, CJC!=uwl,

CV,.C™! = WV, w=e3, C=dag(l,w?w).

Due to technical convenience we shall work in the following gauge

010 10 0
J=1001]|—=J=(0w 0 |,
100 00 w?



u0 0 0 cu c*u
g=100 0 —qg=\|cu 0 cu |, c=——.
00 —u cu c*u 0

Therefore Coxeter’s automorphism acts in sl(3) by inner automor-
phism with the following matrix

010
C=1001
100

e Grading of the algebra sl(3,C)

Since Coxeter’s automorphism has a finite order h = 3 it deter-
mines a grading in sl(3,C) as follows

s((3,0) =g+ gt +¢%, ¢g"={Xes1(3);CXC!=uwrX]
Obviously, the following equalities hold

g€ ng Jc 917 Vk c gk(mod(B)).
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e Spectral properties and direct scattering problem for Zs-reduced
operator L

— Continuous spectrum of L: consists of 6 rays l, (a =1,...,6)

determined by
Im Aa(J) = 0.

— Each ray [, is connected with a s[(2) subalgebra: {E,, F_, H,}

— The A-plane is split into 6 sectors €2, and with each sector can
be introduced different ordering of roots

AT ={aec A;Im(Na(J)) 20, VAeEQ,}.
— Fundamental analytic solutions

X" (2, A) =X H@, NG (N), A€l
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4. Generalized Fourier transform for
Kaup-Kuperschmidt type equations

e Squared solutions

A { W (2, \) = 7 [x* (2, NV H; (X (2, 1) 7]

where 7 : 5l(3) — sl(3)/kerad ;.

e Recursion operator

Introduce the quantities
E@ = Eyo =@ +d@, AW =y Hye = bl 1 f@,
to satisfy

10,6 + [q — N\J, & =0,
10, + [q — \J, V] = 0.
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After splitting the diagonal and off-diagonal part of above equa-

tions we get

i@xea + W[q, ea] + 7T[q7 da] — )\W[Ja eoz]a
10zde + (1 — 7)|q,ea] = 0

Due to the existence of grading in sl(3) the squared solutions have

the representation
€o = €a,0 + €n1+ €q2, d,, :dcli—l—diJQ.

Substituting it into the above equations one gets

1
laxdg + gtr ([q, ea’U]J3—0) — O’ o = 1, 2

= d? = i/ dytr ([q,ea]J°7).
3 Fo0

On the other hand we have
ia:ceoz,() + W[Q? 604,0] — >\7T[J7 604,2]7

ia:cea,a + %ﬂ-[q7 JU]/ dytr ([q’ eOé,O']J3_0) + 7'('[(], 60‘7‘7]
+o0
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As a result one obtains

AOeoz,O — )\604,27 Aaea,a — )\604,0‘—17

AO — adjl (18113 + W[Qv ]) )
1

Ay = ad ! {i&c + éw([q, JU])/:OOdytr (4. J75°) + g, .]}.

Therefore

Aea — )\360” A= AlAng.
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e Expansion over the squared solutions and Fourier transform

Theorem 1 The "squared” solutions fulfill the following complete-
ness relations

6

5(x — y)TI = %;(—1)%1 /ladA{ el (2, 0) @ €, (y, N
(_aﬁ 1)(33 A) ®e(a 1) (y, A } ZZ Res G (z,y, ).
a=1 ng
where
II = a§+ Eo ® E“;(_J;E‘O‘ < EO‘, G(ﬁ‘f(az, Y, \) = e(ﬁ >(a;, ) ® é' %a (y, A).

Hence any function X can be expanded over the ”squared” solu-
tions, namely
6
1 a o
X(@) = 5=y (=)™ / AA (X5, (Ve (@, 0) = Xop, (Ve ()

a=1 la
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6
=12, Xn.

a=1 ng,

the components of X are given by the expressions
X000 = [ dylad e (.0, X ()

X 0= [ " dylad 1eC 0 (5,0), X (1)

— 00

1 oo
Xn, = —/ dytr 4 <adJ®Il Res G(a)(:c,y,)\)X®]1>.

— 00 >\:>\na

In the case under consideration (g = sl(3)) simple poles of the
resolvent are possible. Then the residues of G(®(x,y, \) are

(a) __ (a) (a) (a) .(a)
Res GO (ay.3) = ¢ (@0 ) 06, (02,4l (@ 20,) 86, (.M, ).

where
el (z,A,) = lim A=Xo)el¥(z,)),  é@(z,Ag) = lim \(A=Xg)el® (z, \).

A— A A— Ay
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Then the potential ¢ admits the following expansion

. 6
1 a — a—
o) = 5= D=0 08,0) [ AN (s, el 0) 4 5y, 0)

a=1 la

6
30 30 (el (@A) 0l (M)l (M)

a=1 e AT

where

00 = | " dylad (), e (5, A0)),

— o0

00 = | " dylad sq(y), ¢ (g, A0)).

— o0

It is derived from the Wronskian relation

o

(X*JIx* — J)|> :i/ dzx®[J, q]x°.

— O
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One can easily check that

i/oo dz(X°[J, X% E-o) = —i[[q,e ],

— O

where
O

[Xv] = [ de(x.2.v)

is the so-called skew-skalar product.

On the other hand, we have

(R*IX" = D|Zses E—a) = —a(J)s]]

a,o”

By analogy, the variation of ¢ can be expanded in the following
manner

. 6
ad ;7 '6q(z) = QL Z(—l)“/l d A (532{,5@6(5? (x, \) — 53;_5606(_(1521)(33, )\)) :

a=1 a
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The latter is obtained starting from another Wronskian relation

XOx |, = i/ daxx®dgx?.

— OO
Description of NEE of Kaup-Kuperscmidt type via recursion oper-
ators

It can be verified that the integrable hierarchy of Kaup-Kuperscmidt
equation in terms of A operator reads

iad jlatq = Zc;gl_lAl_leAlad jl[q, J? — Zc?,l_gAl_leq, N =3n-1,

=1 =1

n—1 n
iad jlﬁtq — Z c3_ 1A T AgA ad jl[q, J2] — Z ca1—o N "1Agq, N = 3n — 2,

=1 =1
where

N
F) =) ™, ey =0, 1=0,1,2,....
m=1
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In particular, for the Kaup-Kuperschmidt equation itself we have
f(\) = X\° and therefore

iad jlatq — AApA;ad jl[q, J? = 0.
After substituting the expansions of ¢ and its variation one obtains

i(?tsiﬁaq:)\5ﬁa(J2)siﬁa =0 = Siﬁa = siﬁa,o exp (Fifa(J2)N) .
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