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1. Introduction

• Kaup-Kuperschmidt equation

∂tf = ∂5
x5f + 10f∂3

x3f + 25∂xf∂2
x2f + 20f2∂xf,

where f ∈ C∞(R2).

• Lax representation

L = i∂x + q(x, t) − λJ,

M = i∂t +

5
∑

k=0

Vk(x, t)λk,

where

q =





u 0 0
0 0 0
0 0 −u



 , J =





0 1 0
0 0 1
1 0 0



 .

u and f are interrelated by a Muira transformation as follows

f = −i∂xu +
1

2
u2.
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The Lax pair is associated with the algebra sl(3, C) with additional
symmetries (reductions) imposed ⇒ Caudrey-Beals-Coifman sys-
tem.

Purpose of the talk: to demostrate how the generalized Fourier
interpretation of the inverse scattering method for equations of the
Kaup-Kuperschidt type can be achieved.
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2. Some facts from the theory of solitons

• NEE and Lax pairs

NEE ⇔ [L(λ), M(λ)] = 0,

where

L(λ) = i∂x + U(x, t, λ), U(x, t, λ) = q(x, t) − λJ,

M(λ) = i∂t + V (x, t, λ), V (x, t, λ) =

N
∑

k=0

Vk(x, t)λk,

All quantities q(x, t) and Vk(x, t) belong to a simple Lie algebra g

while J ∈ h is real. We shall require that the potential q fulfills the
condition

lim
x→±∞

|x|lq(x, t) = 0, l ∈ Z
+.
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• Direct scattering problem

– Auxiliary spectral problem (generalized Zakharov-Shabat sys-
tem)

Lψ = (i∂x + q(x, t) − λJ)ψ(x, t, λ) = 0.

Then fundamental solutions ψ take values in G corr. to g.

– Continuous spectrum of L: R ⊂ C.

– Jost solutions

lim
x→±∞

ψ±(x, λ)eiλJx = 11.

– Scattering matrix (data)

T (t, λ) = ψ̂+(x, t, λ)ψ−(x, t, λ), λ ∈ R,

– Dispersion law ⇒ evolution of scattering data

i∂tT + [f(λ), T ] = 0, f(λ) = lim
x→±∞

V (x, t, λ)
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– Fundamental analytic solutions

χ±(x, λ) = ψ−(x, λ)S±(λ) = ψ+(x, λ)T∓(λ)D±,

where S±(λ), T±(λ) and D±(λ) are factors in the Gauss de-
composition of T (λ)

T (λ) =

{

T−(λ)D+(λ)Ŝ+(λ),

T+(λ)D−(λ)Ŝ−(λ).

Hence we have (Riemman-Hilbert problem)

χ+(x, λ) = χ−(x, λ)G(λ), λ ∈ R,

G(λ) =

{

Ŝ−(λ)S+(λ),

D̂−(λ)T̂+(λ)T−(λ)D(λ).

• Algebraic reductions

Let GR be a discrete group acting on the set fundamental solutions
{ψ(x, λ)} as follows

K[ψ(x, κ−1(λ))] = ψ̃(x, λ).
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The requirement of GR-invariance of the lin. problem yields to
certain symmetry conditions on U (and therefore on V ).

Example 1 Coxeter type reduction for sl(r + 1, C)

Impose the Zr+1 reduction condition

C[ψ(x, κ−1(λ))]C−1 = ψ̃(x, λ)

where

κ : λ → ωλ, ω = e
2iπ
r+1 , C = diag (1, ωr, ωr−1 . . . , ω).

Thus the symmetry conditions for U and V read

CU(x, ω−1λ)C−1 = U(x, λ) ⇒ Cq(x)C−1 = q(x), CJC−1 = ωJ,

CV (x, ω−1λ)C−1 = V (x, λ) ⇒ CVk(x)C−1 = ωkVk(x).

Consequently q(x) and J have the form

q =

r
∑

k=1

qkHk, J =
∑

α∈A

Eα.
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3. NEE of the Kaup-Kuperschmidt type

• Lax operators

L(λ) = i∂x + q(x, t) − λJ,

M(λ) = i∂t +
N

∑

k=0

Vk(x, t)λk, N 6= 3l, l ∈ Z
+

where q, J and Vk belong to sl(3, C). Impose the additional Z3

Coxeter type reduction conditions

CqC−1 = q, CJC−1 = ωJ,

CVkC−1 = ωkVk, ω = e
2iπ
3 , C = diag (1, ω2, ω).

Due to technical convenience we shall work in the following gauge

J =





0 1 0
0 0 1
1 0 0



 7→ J =





1 0 0
0 ω 0
0 0 ω2



 ,
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q =





u 0 0
0 0 0
0 0 −u



 7→ q =





0 cu c∗u
c∗u 0 cu
cu c∗u 0



 , c =
ω − 1

3
.

Therefore Coxeter’s automorphism acts in sl(3) by inner automor-
phism with the following matrix

C =





0 1 0
0 0 1
1 0 0



 .

• Grading of the algebra sl(3, C)

Since Coxeter’s automorphism has a finite order h = 3 it deter-
mines a grading in sl(3, C) as follows

sl(3, C) = g0 + g1 + g2, gk = {X ∈ sl(3);CXC−1 = ωkX}.

Obviously, the following equalities hold

q ∈ g0, J ∈ g1, Vk ∈ gk(mod(3)).
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• Spectral properties and direct scattering problem for Z3-reduced
operator L

– Continuous spectrum of L: consists of 6 rays la (a = 1, . . . , 6)
determined by

Im λα(J) = 0.

– Each ray la is connected with a sl(2) subalgebra: {Eα, E−α, Hα}

– The λ-plane is split into 6 sectors Ωa and with each sector can
be introduced different ordering of roots

∆±
a = {α ∈ ∆; Im (λα(J)) ≷ 0, ∀λ ∈ Ωa} .

– Fundamental analytic solutions

χa(x, λ) = χa−1(x, λ)Ga(λ), λ ∈ la.

Ga(λ) =

{

Ŝ−
a (λ)S+

a (λ)

D̂−
a (λ)T̂+

a (λ)T−
a (λ)D+

a (λ),
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where

S±
a (λ) = exp





∑

β∈∆+
a

s±a,βE±β



 , D+
a = exp





r
∑

j=1

d+
a,jHj



 ,

T±
a (λ) = exp





∑

β∈∆+
a

t±a,βE±β



 , D−
a = exp





r
∑

j=1

d−a,jw0(Hj)



 .
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4. Generalized Fourier transform for

Kaup-Kuperschmidt type equations

• Squared solutions

χa(x, λ) →

{

e
(a)
α (x, λ) = π

[

χa(x, λ)Eα(χa(x, λ))−1
]

,

h
(a)
j (x, λ) = π

[

χa(x, λ)Hj(χ
a(x, λ))−1

]

,

where π : sl(3) → sl(3)/ ker ad J .

• Recursion operator

Introduce the quantities

E
(a)
α = χaEαχ̂a = e(a)

α + d(a)
α , H

(a)
j = χaHjχ̂a = h

(a)
j + f

(a)
j .

to satisfy

i∂xE
(a)
α + [q − λJ, E (a)

α ] = 0,

i∂xH
(a)

j + [q − λJ, H
(a)

j ] = 0.
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After splitting the diagonal and off-diagonal part of above equa-
tions we get

i∂xeα + π[q, eα] + π[q, dα] = λπ[J, eα],

i∂xdα + (11 − π)[q, eα] = 0.

Due to the existence of grading in sl(3) the squared solutions have
the representation

eα = eα,0 + eα,1 + eα,2, dα = d1
αJ + d2

αJ2.

Substituting it into the above equations one gets

i∂xd
σ
α +

1

3
tr

(

[q, eα,σ]J3−σ
)

= 0, σ = 1, 2

⇒ dσ
α =

i

3

∫ x

±∞

d ytr
(

[q, eα]J3−σ
)

.

On the other hand we have

i∂xeα,0 + π[q, eα,0] = λπ[J, eα,2],

i∂xeα,σ +
i

3
π[q, Jσ]

∫ x

±∞

d ytr
(

[q, eα,σ]J3−σ
)

+ π[q, eα,σ] = λπ[J, eα,σ−1].
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As a result one obtains

Λ0eα,0 = λeα,2, Λσeα,σ = λeα,σ−1,

where

Λ0 = ad−1
J (i∂x + π[q, .]) ,

Λσ = ad−1
J

{

i∂x +
i

3
π ([q, Jσ])

∫ x

±∞

d ytr
(

[q, .]J3−σ
)

+ π[q, .]

}

.

Therefore
Λeα = λ3eα, Λ = Λ1Λ2Λ0.
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• Expansion over the squared solutions and Fourier transform

Theorem 1 The ”squared” solutions fulfill the following complete-

ness relations

δ(x − y)Π =
1

2π

6
∑

a=1

(−1)a+1

∫

la

dλ
[

e
(a)
βa

(x, λ) ⊗ e
(a)
−βa

(y, λ)

− e
(a−1)
−βa

(x, λ) ⊗ e
(a−1)
βa

(y, λ)
]

− i
6

∑

a=1

∑

na

Res
λ=λna

G(a)(x, y, λ).

where

Π =
∑

α∈∆+

Eα ⊗ E−α − E−α ⊗ Eα

α(J)
, G

(a)
βa

(x, y, λ) = e
(a)
βa

(x, λ) ⊗ e
(a)
−βa

(y, λ).

Hence any function X can be expanded over the ”squared” solu-
tions, namely

X(x) =
1

2π

6
∑

a=1

(−1)a+1

∫

la

dλ
(

Xβa
(λ)e

(a)
−βa

(x, λ) − X−βa
(λ)e

(a−1)
βa

(x, λ)
)
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− i

6
∑

a=1

∑

na

Xna
,

the components of X are given by the expressions

Xβa
(λ) =

∫ ∞

−∞

d y〈ad Je
(a)
βa

(y, λ), X(y)〉

X−βa
(λ) =

∫ ∞

−∞

d y〈ad Je
(a−1)
−βa

(y, λ), X(y)〉

Xna
=

1

2

∫ ∞

−∞

d ytr 1

(

ad J ⊗ 11 Res
λ=λna

G(a)(x, y, λ)X ⊗ 11

)

.

In the case under consideration (g = sl(3)) simple poles of the
resolvent are possible. Then the residues of G(a)(x, y, λ) are

Res
λ=λna

G(a)(x, y, λ) = ė
(a)
βa

(x, λna
)⊗e

(a)
−βa

(y, λna
)+e

(a)
βa

(x, λna
)⊗ė

(a)
−βa

(y, λna
).

where

e(a)
α (x, λa) = lim

λ→λa

(λ−λa)e(a)
α (x, λ), ė(a)

α (x, λa) = lim
λ→λa

∂λ(λ−λa)e(a)
α (x, λ).
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Then the potential q admits the following expansion

q(x) =
i

2π

6
∑

a=1

(−1)(a+1)βa(J)

∫

la

dλ
(

s+
a,βa

e
(a)
βa

(x, λ) + s−a,−βa

e
(a−1)
−βa

(x, λ)
)

−i

6
∑

a=1

∑

α∈∆+
a

(

q̇(a)
α (λa)e(a)

α (x, λa) + q(a)
α (λa)ė(a)

α (x, λa)
)

,

where

q(a)
α (λa) =

∫ ∞

−∞

d y〈ad Jq(y), e
(a)
−α(y, λa)〉,

q̇(a)
α (λa) =

∫ ∞

−∞

d y〈ad Jq(y), ė
(a)
−α(y, λa)〉.

It is derived from the Wronskian relation

(χ̂aJχa − J)|∞−∞ = i

∫ ∞

−∞

dxχ̂a[J, q]χa.
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One can easily check that

i

∫ ∞

−∞

dx〈χ̂a[J, q]χa, E−α〉 = −i
[[

q, e
(a)
−α

]]

,

where
[[

X, Y
]]

≡

∫ ∞

−∞

dx〈X, [J, Y ]〉

is the so-called skew-skalar product.

On the other hand, we have

〈(χ̂aJχa − J)|∞−∞, E−α〉 = −α(J)s+
a,α.

By analogy, the variation of q can be expanded in the following
manner

ad−1
J δq(x) =

i

2π

6
∑

a=1

(−1)a

∫

la

dλ
(

δs+
a,βa

e
(a)
βa

(x, λ) − δs−a,−βa

e
(a−1)
−βa

(x, λ)
)

.
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The latter is obtained starting from another Wronskian relation

χ̂aδχa|∞−∞ = i

∫ ∞

−∞

dxχ̂aδqχa.

• Description of NEE of Kaup-Kuperscmidt type via recursion oper-
ators

It can be verified that the integrable hierarchy of Kaup-Kuperscmidt
equation in terms of Λ operator reads

iad−1
J ∂tq =

n
∑

l=1

c3l−1Λ
l−1Λ0Λ1ad−1

J [q, J2] −

n
∑

l=1

c3l−2Λ
l−1Λ0q, N = 3n − 1,

iad−1
J ∂tq =

n−1
∑

l=1

c3l−1Λ
l−1Λ0Λ1ad−1

J [q, J2] −

n
∑

l=1

c3l−2Λ
l−1Λ0q, N = 3n − 2,

where

f(λ) =

N
∑

m=1

cmλm, c3l = 0, l = 0, 1, 2, . . . .
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In particular, for the Kaup-Kuperschmidt equation itself we have
f(λ) = λ5 and therefore

iad−1
J ∂tq − ΛΛ0Λ1ad−1

J [q, J2] = 0.

After substituting the expansions of q and its variation one obtains

i∂ts
±
a,βa

∓λ5βa(J2)s±a,βa

= 0 ⇒ s±a,βa

= s±a,βa,0 exp
(

∓iβa(J2)λ5t
)

.
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