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Introduction

The very well known picture

Mechanics
on Q

=⇒
Lagrangian
Mechanics

on TQ
=⇒

Hamiltonian
Mechanics
on T ∗Q

=⇒
Hamiltonian
Mechanics
on (P, ω)

generalizes to

Field Theory
on π : E → M

=⇒
Lagrangian

Field Theory
on J1π

=⇒
Hamiltonian
Field Theory

on Mπ
=⇒ ???
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves γ : R −→ P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iγ̇ω|γ − (dH)|γ = 0

What if the time line is unparameterized?

motions = maps γ : M −→ P
velocities = jets of maps in J1(M,P)

jets of maps are naturally inserted into ???
equations of motion ???

In field theory space-time is unparameterized!!!
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Special Forms on Fiber Bundles

Let α : P −→ M be a fiber bundle, x1, . . . , xn, y 1, . . . , ym adapted
coordinates on P. On P consider special forms

Λ := {
∑

q

∑
i1,...,iq

fi1,...,iq dx i1 ∧ · · · ∧ dx iq : fi1,...,iq ∈ C∞(P)}
is a graded subalgebra in Λ(P)

Λp := {
∑

i1,...,ip
dx i1 ∧ · · · ∧ dx ip ∧ ωi1,...,ip : ωi1,...,ip ∈ Λ(P)}
is a differential ideal in Λ(P)

Put VΛ := Λ(P)/Λ1. VΛ is endowed with the vertical differential

dV : VΛ −→ VΛ

VΛ 3 ωV =
∑

p

∑
i1,...,ip

gi1,...,ip dVy a1 ∧ · · · ∧ dVy aq , gi1,...,ip ∈ C∞(P)
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Affine Forms

Let C (P, α) := {(Ehresmann) connections in α : P → M}.
C (P, α) is an affine space (modelled over VD ⊗ Λ1).

Denote by ′Ωk+1 the space of affine maps C (P, α) −→ VΛk ⊗ Λn.

Linear parts of elements in ′Ωk+1 live in ′Ωk+1 := VΛ1 ⊗ VΛk ⊗ Λn−1.

In ′Ωk+1 consider the subspace Ωk+1 made of skew-symmetric
elements, i.e., elements whose linear parts live in Ωk+1 := VΛk+1⊗Λn−1.

ω : C(E, π) −→ VΛ⊗Λn

∇ 7−→ i∇ω
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Affine Forms and Differential Forms

Affine forms are just special differential forms!

Theorem: There are natural graded isomorphisms ...

ι : Λn−1 −→ Ω and ι : Λn−1/Λn −→ Ω

such that the following diagram commutes

Λn−1

ι ��

// Λn−1/Λn

ι��
Ω // Ω

For instance, ω ∈ Ω2 is a differential form locally given by

ω = ωi
abdy a ∧ dyb ∧ dn−1xi − ωcdy c ∧ dnx ,

and, for ∇ ∈ C (P, α), i∇ω = (ωi
ab∇b

i − ωa)dVy a ⊗ dnx .
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Natural Operations with Affine Forms

Insertion of a connection ∇, i∇ : Ω 3 ω 7→ i∇ω ∈ Ω

Insertion of an α-vertical vector field Y , iY : Ω 3 ω 7→ iYω ∈ Ω

Lie der. along an α-proj. vector field X , LX : Ω 3 ω 7→ LXω ∈ Ω

Differential δ : Ω 3 ω 7→ δω ∈ Ω

Pull-back w.r. to a morphism P ′
F //

α′ ��..... P

α
�������

M

, F ∗ : Ω 3 ω 7→ F ∗(ω) ∈ Ω′
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Affine Form Cohomology

The sequence

0 // Λn−1
d // Ω1 δ // · · · // Ωk+1

δ // · · · // Ωn+m // 0

is, clearly, a complex: δ2 = 0.

Cohomology H(Ω, δ) depends on the topology of the bundle α : P −→ M

Affine Form Poincaré Lemma

Let ω ∈ Ωk+1, k ≥ 0 be δ-closed, i.e., δω = 0, then ω is locally δ-exact,
i.e., locally, ω = δϑ, ϑ ∈ Ωk .
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PD Hamiltonian Systems and PD Hamilton Equations

Definition

A PD hamiltonian system (PDHS) in the bundle α : P −→ M is a
δ-closed affine 2-form ω ∈ Ω2, i.e., δω = 0.

Locally, a PDHS is a δ-exact affine form and it is locally given by

ωi
abdy a ∧ dyb ∧ dn−1xi − (∂aH + ∂iϑ

i
a)dy a ∧ dnx , ωi

ab = ∂[aϑ
i
b].

Definition.

PD Hamilton equations (PDHE) determined by ω are the equations:
iσ̇ω|σ = 0 imposed on sections of σ : M −→ P of α.

Locally, PDHE read

2ωi
ab y a,i = ∂bH + ∂iϑ

i
b.
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Constraint Algorithm

Solutions to the PDHE can be searched in two steps:

1 search for connections ∇ ∈ C (P, α) such that i∇ω = 0,

2 search for flat sections with respect to ∇.

Problem 1 doesn’t possess solutions in general. Therefore, we rather
search for connections ∇′ in some subbundle P ′ ⊂ P, such that
i∇′ω|P′ = 0.

Theorem (existence of a Constraint Algorithm)

Let P(s) := {θ ∈ P : ∃ α-horizontal Πn ⊂ TθP(s−1) s.t. iΠωθ = 0}.

Then P(s) = P ′ for s � 1, and P ′ is a maximal subbundle where
i∇′ω|P′ = 0 for some connection ∇′ in P ′.
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PD Noether Theorem and PD Poisson Bracket

Definition

Y ∈ VD and f ∈ Λn−1 are a PD Noether symmetry/current pair, iff
iYω = df .

Theorem (PD Noether)

Let f ∈ Λn−1 be a PD Noether current and σ a solution of PDHE. Then∫
Σ
σ∗(f ) is a conserved quantity, i.e., it is independent on the choice of

Σn−1 ⊂ M in a homology class.

PD Noether symmetries and currents form Lie algebras.

If Y1, f1 and Y2, f2 are PD Noether symmetry/current pairs, then
[Y1,Y2], {f1, f2} := LY1 f2 is a well defined PD Noether symmetry/current
pair and f1, f2 7→ {f1, f2} is a Lie bracket.
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Gauge Reduction of PD Hamiltonian Systems

Let ω be an unconstrained PDHS. A PD Noether symmetry Y such that
iYω = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Remark

Gauge symmetries span an involutive α-vertical distribution G .

Denote by P̃ the bundle of leaves of G and by p : P → P̃ the projection.

Theorem (gauge reduction of PDHSs)

There exists a unique PDHS ω̃ in P̃ such that
1) ω doesn’t possess gauge symmetries, 2) ω = p∗(ω̃), 3) a section σ of
P is a solution of the PDHE determined by ω iff p ◦ σ is a solution of the
PDHE determined by ω̃.
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A Non-Degenerate Example

In the bundle (x1, x2, u, u1, u2) 7−→ (x1, x2) consider the PDHS

ω := T−1(δij−T−2uiuj)dui ∧(du∧dn−1xj−ujd
nx), T :=

√
1 + δijuiuj

The PDHE are {
(δij − T−2uiuj)ui ,j = 0
u,i = ui

which is equivalent to the minimal surface equation.

Proposition

Y , f is a PD Noether symmetry current pair iff

Y = U ∂
∂u , f = U T−1

(
u2dx1 − u1dx2

)
+ dB,

where U = const, B = B(x1, x2). The PD Poisson bracket is trivial.
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A Degenerate, Unconstrained Example

In α : P 3 (. . . , xµ, . . . ,Aµ, . . . ,Aµ|ν , . . .) 7→ (. . . , xµ, . . .) ∈M consider

the PDHS ω := 2dA[ν|µ]
(

1
2 A[µ|ν]d

nx − dAµdn−1xν
)
. The PDHE are{

A[µ|ν],ν = 0
A[µ,ν] = A[µ|ν]

which are Maxwell equations
for the potential

G :=
〈
. . . , ∂

∂Aµ|ν
+ ∂

∂Aν|µ
, . . .

〉
and the gauge reduction of P is

p : (. . . , xµ, . . . ,Aµ, . . . ,Aµ|ν , . . .) 7→ (. . . , xµ, . . . ,Aµ, . . . ,Fµν , . . .)
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1
4 Fµνdnx − dAµdn−1xν

)
and the reduced PDHE{
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A[µ,ν] = 1

2 Fµν

which are Maxwell equations
for the field strenght
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