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The very well known picture
Mechanics Lagrangian

Hamiltonian
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on TQ on T*Q
generalizes to
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Introduction
The very well known picture
. Lagrangian Hamiltonian Hamiltonian
Mechanics . . .
on Q —> Mechanics = Mechanics = Mechanics
on TQ on T*Q on (P,w)
generalizes to
. Lagrangian Hamiltonian
Field Theory = Field Theory = Field Theory
onm:E—-M 1
on J*m on A1
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Introduction
The very well known picture
. Lagrangian Hamiltonian Hamiltonian
Mechanics . . .
on Q —> Mechanics = Mechanics = Mechanics
on TQ on T*Q on (P,w)
generalizes to
Field Theor Lagrangian Hamiltonian ? 7 ?
Y — Field Theory = Field Theory —> e s
onm:E—-M 1
on J*m on A1
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In hamiltonian mechanics the time line is assumed to be parameterized

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions:

What if the time line is unparameterized?

jets of maps are naturally inserted into 777

equations of motion
In field theory space-time is unparameterized!!!
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motions = curves v : R — P

In hamiltonian mechanics the time line is assumed to be parameterized
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions:

What if the time line is unparameterized?

jets of maps are naturally inserted into 777

equations of motion
In field theory space-time is unparameterized!!!
«40r 4F»r « =) 4 > Q>
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves v : R — P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iyw|y — (dH)|, =0
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves v : R — P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iyw|y — (dH)|, =0

What if the time line is unparameterized?
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves v : R — P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iyw|y — (dH)|, =0

What if the time line is unparameterized?

motions = maps v: M — P
velocities = jets of maps in J*(M, P)
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves v : R — P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iyw|y — (dH)|, =0

What if the time line is unparameterized?

motions = maps v: M — P
velocities = jets of maps in J*(M, P)

jets of maps are naturally inserted into 777
equations of motion 777
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Introduction: a naive remark

In hamiltonian mechanics the time line is assumed to be parameterized

motions = curves v : R — P
velocities = tangent vectors in TP

tangent vectors are naturally inserted into differential forms
Hamilton equations of motions: iyw|y — (dH)|, =0

What if the time line is unparameterized?

motions = maps v: M — P
velocities = jets of maps in J*(M, P)

jets of maps are naturally inserted into 777
equations of motion 777

In field theory space-time is unparameterized!!!
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Let o : P — M be a fiber bundle, x*,.
coordinateson P. oo oo o

X"yt ..., y™ adapted

is a graded subalgebra in A(P)

is a differential ideal in A(P)
Put

VA is endowed with the vertical differential
dV: VA — VA

 &ir,.hip € C(P)
«Or «F>» «=)» (=) A



Let o : P — M be a fiber bundle, x!,...,x", y!, ..., y™ adapted
coordinates on P. On P consider special forms

R o= (50 Sy iy A

iy € C(P)}
is a graded subalgebra in A(P)

is a differential ideal in A(P)
Put

VA is endowed with the vertical differential
dv: VA > VA

, 8i,..iy € CF(P)
«O)>» «Fr «=E» « =) A
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Special Forms on Fiber Bundles

Let o : P — M be a fiber bundle, x!,...,x", y!, ..., y™ adapted
coordinates on P. On P consider special forms

..... i Fig XA A X

is a graded subalgebra in A(P)

Ip

is a differential ideal in A(P)

/\P . {Zl’hm,ip dXil AN dXip A Wit oyip = Wity
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Special Forms on Fiber Bundles

Let o : P — M be a fiber bundle, x!,...,x", y!, ..., y™ adapted
coordinates on P. On P consider special forms

..... i Fig XA A X

is a graded subalgebra in A(P)

No = {34, dXE A N Nwi L, wi i, € M(P)}

p p

is a differential ideal in A(P)

Put VA := A(P)/A;.
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Special Forms on Fiber Bundles

Let o : P — M be a fiber bundle, x!,...,x", y!, ..., y™ adapted
coordinates on P. On P consider special forms

/\ - {Zq le..“,iq f’ s“--iquil /\ e /\ dxiq : f}l-,-»'siq E COC(P)}
is a graded subalgebra in A(P)
Np = {Zihm,i,, dxt A AdxP A Wi,y Wi,.iy € N(P)}

is a differential ideal in A(P)

Put VA := A(P)/A;. VA is endowed with the vertical differential
dV: VA — VA
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Special Forms on Fiber Bundles

Let o : P — M be a fiber bundle, x!,...,x", y!, ..., y™ adapted
coordinates on P. On P consider special forms

R (S i i@ A Ao £y € C(P))
is a graded subalgebra in A(P)
Np = {Zihm,i,, dxt A AdxP A Wi,y Wi,.iy € N(P)}

is a differential ideal in A(P)
Put VA := A(P)/A;. VA is endowed with the vertical differential
dV: VA — VA
i G,y dVy AN dYya, g i€ C(P)
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Let C(P,a) := {(Ehresmann) connections in o : P — M}.
C(P,a) is an affine space (modelled over VD ® A!).

Denote by 'Q*1 the space of affine maps C(P,a) — VAK @ A"

Linear parts of elements in ‘Q%*1 live in 'Q*™ := VAl @ VAK @ A" 1.
In 'QK*! consider the subspace

elements, i.e., elements whose linear parts live in
w:

made of skew-symmetric

C(E,r) — VAQ®A"
v .

—

Iyw
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Let C(P,a) := {(Ehresmann) connections in o : P — M}.
C(P, ) is an affine space (modelled over VD ® Al).
Denote by ‘Q*1 the space of affine maps C(P,a) — VA @ A"

) ) ) ) k41
Linear parts of elements in ‘Q**1 live in /Q*"

V/\l V/\k < anl
In 'QK* consider the subspace
elements, i.e., elements whose linear parts live in

made of skew-symmetric
w:

C(E,7x) — VA® A"
\v4 — i

Iyw
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Let C(P,a) := {(Ehresmann) connections in o : P — M}.
C(P,a) is an affine space (modelled over VD ® A!).

Denote by ‘Q*1 the space of affine maps C(P,a) — VA @ A"

Linear parts of elements in ‘Q*? live in 'Q*T! := VAl @ VAK @ A",
In 'QK*! consider the subspace

elements, i.e., elements whose linear parts live in
w:

made of skew-symmetric

C(E,m) — VAQA"
v — i

Iyw
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Affine Forms

Let C(P, ) := {(Ehresmann) connections in o : P — M}.
C(P, ) is an affine space (modelled over VD @ Al).

Denote by 'Q*1 the space of affine maps C(P,a) — VAK @ A"

Linear parts of elements in ‘Q*? live in 'Q*T! := VAl @ VAK @ A",

In 'Qk+1 consider the subspace Q%" made of skew-symmetric
elements, i.e., elements whose linear parts live in Q™' := VAKL @ AL,
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Affine Forms

Let C(P, ) := {(Ehresmann) connections in o : P — M}.
C(P, ) is an affine space (modelled over VD @ Al).

Denote by 'Q*1 the space of affine maps C(P,a) — VAK @ A"

Linear parts of elements in ‘Q*? live in 'Q*T! := VAl @ VAK @ A",

In 'Qk+1 consider the subspace Q%" made of skew-symmetric
elements, i.e., elements whose linear parts live in Q™' := VAKL @ AL,

w: C(E,m) — VAQA"
\v4 — ivw
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Affine forms are just special differential forms!

L I/\”,] 4’Q and /,:/\nf]//\n 4’Q
such that the following diagram commutes

/\n 11— /\n 1//\/1
r\l/ \LL
Q——Q
For instance, w € Q2 is a differential form locally given by

and, for V € C(P, ),

)
«O)>» «Fr «=E» « =) A
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Affine Forms and Differential Forms

Affine forms are just special differential forms!

Theorem: There are natural graded isomorphisms ...
t:N—1 —Q and A1 /N,— Q

such that the following diagram commutes

An—l —— An—l//\n

L\L ¢£

Q—Q
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Affine Forms and Differential Forms

Affine forms are just special differential forms!

Theorem: There are natural graded isomorphisms ...
t:N—1 —Q and A1 /N,— Q

such that the following diagram commutes

An—l —— An—l//\n

L\L ¢£

Q—Q

For instance, w € Q? is a differential form locally given by

w=w dy? A dy? A d"1x; — wedy€ A d"x
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Affine Forms and Differential Forms

Affine forms are just special differential forms!

Theorem: There are natural graded isomorphisms ...
t:N—1 —Q and A1 /N,— Q

such that the following diagram commutes

An—l —— An—l//\n

L\L ¢£

Q—Q

For instance, w € Q? is a differential form locally given by
w=w dy? A dy? A d"1x; — wedy€ A d"x

and, for V € C(P,q), ivw = (w,V? — w,)dYy? @ d"x.
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@ Insertion of a connection V,

@ Insertion of an a-vertical vector field Y,

@ Lie der. along an a-proj. vector field X,
o Differential

@ Pull-back w.r. to a morphism p’ op,

M

iv: Q32w iyw e Q

«Or 4F>» «=)» « =) = Q>



@ Insertion of a connection V,

@ Insertion of an a-vertical vector field Y,

@ Lie der. along an a-proj. vector field X,
o Differential

@ Pull-back w.r. to a morphism p’ A op,

M

«40)>» «F» «Z)» « = = Q>

iv: Q32w iyw e Q

iy : Q3w iyw e Q

v



@ Insertion of a connection V

@ Insertion of an a-vertical vector field Y,

o Lie der. along an a-proj. vector field X
o Differential

@ Pull-back w.r. to a morphism P’ A P,

Ao

«40)>» «F» «Z)» « = = Q>

Qo3wr—iyw e
Qo>wriywe

Qowr Lxw e

v



Natural Operations with Affine Forms
Affine Form Cohomology

@ Insertion of a connection V,

iv: Q32w iyw e Q
@ Insertion of an a-vertical vector field Y,

iy : Q3w iyw e Q
o Lie der. along an a-proj. vector field X,
o Differential

Lx : Q2w Lxw e Q

0:Qo>wr—dwe

(=)

o =
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Natural Operations with Affine Forms

Insertion of a connection V, iv: Q232w iyw € Q

@ Insertion of an a-vertical vector field Y, iy : Q23w — iyw €

Lie der. along an a-proj. vector field X, Lx: Q3w Lxw €

Differential 0:Q32wr dwe

Pull-back w.r. to a morphism p’ o P,Fr:Qow— Ff(w)e

by
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The sequence

0—=Ar1—S-01

e Qk+1 J
is, clearly, a complex: §% = 0.

Qnrm 0
Cohomology H(2,0) depends on the topology of the bundle a: P — M

Let w € QK1 k > 0 be d-closed, i.e., dw = 0, then w is locally d-exact,
i.e., locally, w = 049, ¥ € Qk.

«40)>» «F» «Z)» « = = Q>

v



Natural Operations with Affine Forms
Affine Form Cohomology

The sequence

0 An-1—9s g1 0 Qkt+1 2
is, clearly, a complex: 4% = 0

Qn—i—m

0
Cohomology H(, ) depends on the topology of the bundle o : P — M

[m]

(=)
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Affine Form Cohomology

Natural Operations with Affine Forms
Affine Form Cohomology

The sequence

0 /\nfl Ql 4 Qk+1 . Qn+m 0

is, clearly, a complex: 52 =0.

Cohomology H(, ) depends on the topology of the bundle o : P — M

Affine Form Poincaré Lemma

Let w € QK1 k > 0 be d-closed, i.e., dw = 0, then w is locally d-exact,
i.e., locally, w = 89, ¥ € QK.
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PD Hamiltonian Systems and PD Hamilton Equations

PD Hamiltonian Systems and PD Hamilton Equations
Constraint Algorithm

Definition

A PD hamiltonian system (PDHS) in the bundle o: P — M is a
d-closed affine 2-form w € Q2?, i.e., dw = 0.
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PD Hamiltonian Systems and PD Hamilton Equations

Definition

A PD hamiltonian system (PDHS) in the bundle o: P — M is a
d-closed affine 2-form w € Q2?, i.e., dw = 0.

Locally, a PDHS is a d-exact affine form and it is locally given by

w;bdy"" Ady? A d"1x; — (9,H + 0;9%)dy? A d"x, w;b = 8[319;7].
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PD Hamiltonian Systems and PD Hamilton Equations

Definition

A PD hamiltonian system (PDHS) in the bundle o: P — M is a
d-closed affine 2-form w € Q2?, i.e., dw = 0.

Locally, a PDHS is a d-exact affine form and it is locally given by

whody? Ady? Ad"ix — (0,H + 9;9%)dy? Ad"x, Wi, = 8[3’19;')].

Definition.

PD Hamilton equations (PDHE) determined by w are the equations:
isw|s = 0 imposed on sections of ¢ : M — P of a.
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PD Hamiltonian Systems and PD Hamilton Equations

Definition

A PD hamiltonian system (PDHS) in the bundle o: P — M is a
d-closed affine 2-form w € Q2?, i.e., dw = 0.

Locally, a PDHS is a d-exact affine form and it is locally given by

whody? Ady? Ad"ix — (0,H + 9;9%)dy? Ad"x, Wi, = 8[3’19;')].

Definition.

PD Hamilton equations (PDHE) determined by w are the equations:
isw|s = 0 imposed on sections of ¢ : M — P of a.

Locally, PDHE read

2w;b ya,i=0pH + 8,013
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Solutions to the PDHE can be searched in two steps:

@ search for connections V € C(P, «) such that iyw =0,
/.de

@ search for flat sections with respect to V.

Problem 1 doesn’t possess solutions in general. Therefore, we rather
search for connections V' in some subbundle P’ C P, such that
pr =0.

Let

/IV/uJ

p» = 0 for some connection V' in P’.

«O0r 4Fr «=» « = A2 N Ge

Then Py = P’ for s > 1, and P’ is a maximal subbundle where

v



PD Hamiltonian Systems and PD Hamilton Equations
Constraint Algorithm

Solutions to the PDHE can be searched in two steps:

@ search for connections V € C(P, «) such that iyw =0,
@ search for flat sections with respect to V.

(=)

o =
Partial Differential Hamiltonian Systems
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PD Hamiltonian Systems and PD Hamilton Equations
Constraint Algorithm

Constraint Algorithm

Solutions to the PDHE can be searched in two steps:
@ search for connections V € C(P, a) such that iyw =0,
@ search for flat sections with respect to V.

Problem 1 doesn't possess solutions in general. Therefore, we rather
search for connections V' in some subbundle P’ C P, such that
I'v/w|p/ =0.
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PD Hamiltonian Systems and PD Hamilton Equations
Constraint Algorithm

Constraint Algorithm

Solutions to the PDHE can be searched in two steps:

@ search for connections V € C(P, a) such that iyw =0,
@ search for flat sections with respect to V.

Problem 1 doesn't possess solutions in general. Therefore, we rather
search for connections V' in some subbundle P’ C P, such that
iv/(.u|p/ =0.

Theorem (existence of a Constraint Algorithm)

Let P(s) := {0 € P : 3 a-horizontal N" C TyP(s_1) s.t. inws = 0}.

Then Py = P’ for s > 1, and P’ is a maximal subbundle where
iy w|pr = 0 for some connection V’ in P’.
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PD Noether Theorem and PD Poisson Bracket

PD Noether Theorem and PD Poisson Bracket
Gauge Reduction of PD Hamiltonian Systems

Definition

Y € VD and f € A""! are a PD Noether symmetry/current pair, iff
iyu} = df.
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PD Noether Theorem and PD Poisson Bracket

Y € VD and f € A""! are a PD Noether symmetry/current pair, iff
iyu} = df.

Theorem (PD Noether)

Let £ € A"~ ! be a PD Noether current and o a solution of PDHE. Then
fz o*(f) is a conserved quantity, i.e., it is independent on the choice of
Y"1 € M in a homology class.
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PD Noether Theorem and PD Poisson Bracket

Y € VD and f € A""! are a PD Noether symmetry/current pair, iff
iyu} = df.

Theorem (PD Noether)

Let £ € A"~ ! be a PD Noether current and o a solution of PDHE. Then
fz o*(f) is a conserved quantity, i.e., it is independent on the choice of
Y"1 € M in a homology class.

PD Noether symmetries and currents form Lie algebras.

Luca Vitagliano Partial Differential Hamiltonian Systems
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PD Noether Theorem and PD Poisson Bracket

Y € VD and f € A""! are a PD Noether symmetry/current pair, iff
iyw = df.

Theorem (PD Noether)

Let £ € A"~ ! be a PD Noether current and o a solution of PDHE. Then
fz o*(f) is a conserved quantity, i.e., it is independent on the choice of
Y"1 € M in a homology class.

PD Noether symmetries and currents form Lie algebras.

If Y1, and Ya, f; are PD Noether symmetry/current pairs, then
[Y1, Y2], {fi, fa} := Ly, f> is a well defined PD Noether symmetry/current
pair and f1,f, — {fi, >} is a Lie bracket.

Luca Vitagliano Partial Differential Hamiltonian Systems
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Gauge Reduction of PD Hamiltonian Systems

PD Noether Theorem and PD Poisson Bracket
Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry.
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Gauge symmetries span an involutive a-vertical distribution G.
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Gauge symmetries span an involutive a-vertical distribution G.

Denote by P the bundle of leaves of G and byp: P — P the projection.
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Gauge symmetries span an involutive a-vertical distribution G.

Denote by P the bundle of leaves of G and byp: P — P the projection.

Theorem (gauge reduction of PDHSs)

There exists a unique PDHS @ in P such that
1) w doesn't possess gauge symmetries,
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Gauge symmetries span an involutive a-vertical distribution G.

Denote by P the bundle of leaves of G and byp: P — P the projection.

Theorem (gauge reduction of PDHSs)

There exists a unique PDHS @ in P such that
1) w doesn't possess gauge symmetries, 2) w = p*(@),
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Gauge Reduction of PD Hamiltonian Systems

Let w be an unconstrained PDHS. A PD Noether symmetry Y such that
iyw = 0 is naturally interpreted as a gauge symmetry. Gauge symmetries
should be quotiented out via reduction.

Gauge symmetries span an involutive a-vertical distribution G.

Denote by P the bundle of leaves of G and byp: P — P the projection.

Theorem (gauge reduction of PDHSs)

There exists a unique PDHS @ in P such that

1) w doesn’t possess gauge symmetries, 2) w = p*(@), 3) a section o of
P is a solution of the PDHE determined by w iff p o o is a solution of the
PDHE determined by w.
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In the bundle (x*, x2, u, uy, up) — (

xb x

2) consider the PDHS
w:= TV -T2 v)du; A(dund"1x; — ujd"x),
The PDHE are

{ (69 — T=2u'¥)u;,; =0

u,; = uj

T = /14 0luju;

which is equivalent to the minimal surface equation.

Y, f is a PD Noether symmetry current pair iff
Y =UZ

5, f[=U = (u2dx1 — uydx?) + dB,
where U = const, B = B(x!, x?). The PD Poisson bracket is trivial.
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A Non-Degenerate Example
A Degenerate, Unconstrained Example

In the bundle (x}, x2, u, uy, up) — (x*, x?) consider the PDHS
w:= T Y8 = T2u' ) du; A(dund™tx;—ujd"x), T :=+/1+iuju;
The PDHE are

u,j = uj

{ ((SU — T*2u"uj)u,-,j =0

which is equivalent to the minimal surface equation.
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A Non-Degenerate Example

In the bundle (x}, x2, u, uy, up) — (x*, x?) consider the PDHS
w:= T Y8 = T2u' ) du; A(dund™tx;—ujd"x), T :=+/1+iuju;
The PDHE are

u,j = uj

{ ((SU — T*2u"uj)u,-,j =0

which is equivalent to the minimal surface equation.

Proposition

Y, f is a PD Noether symmetry current pair iff
Y = U%, f=UT1! (uzdx1 — uldxz) + dB,

where U = const, B = B(x!,x2). The PD Poisson bracket is trivial.
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Ina:P>(.

X AL Ay ) = (e xP L) € M consider

the PDHS w := 2dAlVI/] (;A[Md x — dA,d"~ 1xy). The PDHE are
{ Alelvl - — 0

A[/l-l,/] o A[// [v]

o g o
Gi= (-5

which are Maxwell equations
for the potential

~+ 74, > and the gauge reduction of P is
po( Xt AL A},‘,,...)H(...,X/’ ..... Apyeeos Fuv,...)
F//V o FII,H and p ( /”/) = 2A[“‘/‘]

and the reduced PDHE

{ F““_’N =0
A[//'}/] o 1

which are Maxwell equations
§F/11/

for the field strenght
«0)>» «F» «=Z)r» « =) = Q>
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A Degenerate, Unconstrained Example

Ina:P>(..,xM . AL Ay, ) = (o, x*, . .) € M consider
the PDHS w := 2dA!M (LA, ,,d"x — dA,d""'x,). The PDHE are

Alelrl =0 which are Maxwell equations
Aps] = ALy for the potential
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A Non-Degenerate Example
A Degenerate, Unconstrained Example

Ina:P>(..,xM . AL Ay, ) = (o, x*, . .) € M consider
the PDHS w := 2dA!M (LA, ,,d"x — dA,d""'x,). The PDHE are

Alelrl =0 which are Maxwell equations
Aps] = ALy for the potential

6= (ot )
> OAL + 0AL .’
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A Degenerate, Unconstrained Example

Ina:P>(..,xM . AL Ay, ) = (o, x*, . .) € M consider
the PDHS w := 2dA!M (LA, ,,d"x — dA,d""'x,). The PDHE are

Alelrl =0 which are Maxwell equations
Aps] = ALy for the potential

— d ) . .
G := < AL + P, > and the gauge reduction of P is

c XA A ) e X AL P, )

Fuu = _Fuu and p*(F/ﬂ’) = 2A[V|#]'

k=2
—_
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A Degenerate, Unconstrained Example

Ina:P>(..,xM . AL Ay, ) = (o, x*, . .) € M consider
the PDHS w := 2dA!M (LA, ,,d"x — dA,d""'x,). The PDHE are

Alelrl =0 which are Maxwell equations
Aps] = ALy for the potential

— d ) . .
G := < AL + P, > and the gauge reduction of P is

c XA A ) e X AL P, )

Fuu = _Fuu and p*(F/ﬂ’) = 2A[V|#]'

k=2
—_

& = dF* (3 Fud™x — dA,d"'x,)
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A Degenerate, Unconstrained Example

Ina:P>(..,xM . AL Ay, ) = (o, x*, . .) € M consider
the PDHS w := 2dAl"M (A, ,1d"x — dA,d" 'x,). The PDHE are

Alelrl =0 which are Maxwell equations
Aps] = ALy for the potential
G:= < . % + %, . > and the gauge reduction of P is

(Xt AL LA ) (XA )
FMV = _Fuu and p*(Fuy) = 2A[V|#].
w = dF* (%Flwd"x — dAl,dnflx,,)

and the reduced PDHE

F#v o, =0 which are Maxwell equations
Al = %Fuv for the field strenght
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