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This talk is based on the joint work with H. Omori, Y.
Maeda and N. Myazaki.

Abstract

We extend star products by means of complex symmet-
ric matrices. We obtain a family of star products.

We consider star exponentials with respect to these star
products, and we obtain several interesting identities.

Plan

[1 First we explain general setting; introducing the con-
cept of g-number functions.

[1 Then we consider the example of star exponential and
its application.
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31. A family of star products

§1.1. Moyal product, normal and anti-normal prod-
ucts

It is well known that the star products such as the Moyal
product, normal product and the anti-normal product are
obtained by fixing the orderings in the Weyl algebra.

These are products on polynimals and the obtained al-
gebras are all isomorphic to the Weyl algebra.

§1.2, Extension

We extend these products and we obtain a family star
products parametrized by the space of all complex sym-
metric matrices.

The intertwiners are also extended to these star prod-
ucts, and then all star product algebras are also mutually
iIsomorphic and isomorophic to the Weyl algebra.
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§1.3. Definition of star product

For simplicity, we consider star products of 2 variables
(u1,un). The general case for (uy1,uon, -+ ,uo,,) IS similar.

1. First we consider biderivation

For a complex matrix A = ()‘11 >‘12) e M>(C), we
A21 A22

consider a bi-derivation acting on complex polynoimals
p1(u1,un),pa(ug,un) € P(C?)
such that

2
— —
p1| D At Ouy, 0w | P2
k=1

P1 (3/\5)) p2

2

Z )‘klaukplaUZPQ (1)
kil=1
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2. Star product
We fix the skew symmetric matrix

‘]=<—01(1)> (2)

For an arbitrary complex symmetric matrix K € Sg(2)
we put

N=J+ K

and we define a product %y on the space of complex poly-
nomials py(u1,u2),p2(ui,up) € P(C?);

th— —
P1 *5 P2 = p1 EXP 58/\8 D2
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3. Associativity

We have

Proposition 1 For an arbitrary complex symmetric
matrix K € So(2) the product =g is associtaive on the
space of all complex polynomials P(C?).

4. Isomorphic to the Weyl algebra
CCR

For an artibrary K € S¢(2), the product =, satisfies the
canonical commutation relations

[uk,ul]*K — UL *K U — yy *K ukzz'hékl, k,lz 1,2. (4)

and hence it follows that all algebras (P(CQ),*K) are iso-
morphic to the Weyl algebra W5 of two generators uq, u»o.
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Intertwiners

The algebra isomorphis (intertwiners)

K
I (P(C?),xg,) — (P(C?),%k,) (5)
are explicitly given by
K th
2) = oo (5 (K2 — K1)3? ) (6)
where
2
(Ko — K1)0% = ) (Ko — K1)g0u,0y, (7)
kl=1
We have the relations
Proposition 2 (/) IK3IK2 Il[gf

(i) (Ig3)~t =
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Infinitesimal intertwiner

By differentiating the intertwiner with respect to K, we
obtain the infinitesimal intertwiner at K

K .
Vie(p) = 41 KJ”SF‘"(JD)H:O = U kd?p (8)
Then the infinitesimal intertwiner satisfies
Vi(p1 *5 p2) = Vi(p1) *5 p2 + p1 *5 Vi(p2) (9)
for any p1(u1,us),po(ur,un) € P(C?).
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§1.4. g-number polynomials

2

In the star product algebras {(P(C ), *K)}KeS(;Q)' the al-
gebras (P(C?),*k,) and (P(C?),xk,) are mutually isomor-

. . . K
phic by the intertwiner I} and the elements p; € (P(C?),*k,)
and py € (P(C?),*k,) are identified when

K
p2 = I32(p1) (10)

In order to give a geometric picture to the family of star
product algebras {(P(Cz),*K)}Kesc(Q), we introduce an

algebra bundle over S-(2) whose fibres consisit of the Weyl
algebra in the following way.
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1. Algebra bundle

We consider the the trivial bundle
P =P(C?) x Sc(2) — Sc(2) (11)

whose fibre over K € Sg(2) consists of the star product
algebra

mHK) = (P(C?), %K) (12)

2. Flat connection and parallel translation

On this bundle, we regard the infinitesimal intertwiner V
as a flat connection and the intertwiner I[[% as its parallel
translation.

We consider a section p € I'(IP) of this bundle satisfying

~ Ko, ~
P(K2) = I 2(p(K1)) (13)

This means that p is parallel
Vip(K) =0 (14)

o e l(4)
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3. g-number polynomial

We denote by P(IP) the space of all parallel sections, and
call an element p € P(P) ¢-number polynomial.

Due to the identies Iflg'lllgl2 = Iffgf and (I[Igf)—l = I[[él the
intertwiners naturally induce the product * on P(P). Then
the algebra (P(P), ) is regarded as a geometric realization
of the Weyl algebra.
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32. g-number functions

We introduce a locally convex topology into the family of
star product algebras by means of a system of semi-norms.

We take the completion of the algebras and then we can
consider star exponentials.

1. Topology

We introduce a topology into 7?(02) by a system of semi-
norms in the following way.

Let p be a positive number. For every s > 0 we define a
semi-norm for polynomials by

Ipls = sup |p(u1,up)|exp (—slul”) (15)
ucC?

Then the system of semi-norms {| - |s},~o defines a locally
convex topology 7, on P(C?).
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2. Fréchet space £,(C?)

Definition We take the completion of P(C?) with re-
spect to the topology 7,, we obtain a Fréchet space £,(C?).

Proposition 3 For a positive number p, the Fréchet space
Ep consists of entire functions on the complex plane C? with
finite semi-norm for every s > 0, namely,

/(C?) = {f € H(C?) | |fls < 400, ¥s >0}  (16)
Continuity for the case 0 < p <2

As to the continuitiy of star products and intertwiners,

the space 8,)(02), 0 < p<2isvery good, namely, we have
the following

Theorem 1 On £,(C?), 0 < p < 2 every product *p is
. . . K

continuous, and every intertwiner IK12 L (Ep(C?), xp,) —

(£p(C?), xg,) is continuous.
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Continuity as a bimodule for the case p > 2

As to the spaces Ep(C’Q) for p > 2, the situation is no so
good, but still we have the following.

Theorem 2 For p > 2, take p’ > 0 such that

1 1

ST =1

P P
then every star product xi defines a continuous bilinear
product

: 2 2 2 2 2 2

xi - Ep(C )xgp/(C ) — Ep(C7), Sp/(C’ ) X E,(C*) — E,(C*)
This means that (£,(C?), xg) is a continuous £,(C?)-
bimodule.
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3. g-number functions
The case 0 < p<?2

Due to the previous theorem, we can introduce a similar
concept as g-number polynomials into the Fréchet spaces.

Namely, the star product g is well defined on £,(C?) and
then we consider the trivial bundle

m:Ey = &E,(C?) x Sc(2) — Sc(2) (17)
with fibre over the point K € S¢(2) consists of
n N (K) = (£)(C?), xk) (18)

The intertwiners I 2 are well defined for any K1, K> €
Sc(2) and then the bundle E, has a flat connection V and
the parallel translation is the intertwiner.

The space of flat sections of the bundle denoted by F,
naturally has the product * and can be regarded as a com-
pletion of the Weyl algebra W5.
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4. Remark to the case p > 2

For the case p > 2, at present it is not clear whether the
intertwiners are well-defined and whether the product xg
are well defined. However the flat connection V is still well
defined on 7 : E, = £,(C?) x Sc(2) — Sc(2), so we can
define a space F, of all parallel sections of this bundle even
for p > 2.

For p > 2, we are trying to extend the product xj and
also the intertwiners Ifgl? by means of some regularizations,
for example, Borel-Laplace transform, or finite part regular-
ization. I hope to construct such a concept in near future.
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5. Star expoenential

‘The space of g-number functions F, is a complete topo-
logical algebra for 0 < p < 2 (even p > 2 for future under
some regularization). We can consider exponential element

H X H H
) nl ah 1h,
n=0 P4

in this algebra.
For a ¢g-number polynomial H € P(P), we define the star
exponenial expy t(H/ih) by the differential equation

d expy t = exp, t expy t li—0 = 1 (20)
a HY _H N H H _
dt P ih ih P ih)’ P i) =0
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6. Remark

We set the Fréchet space

E,+(C?) = Ny5,E\(C?) (21)
and we donote by pr_|_ the correponding bundle and by J—"p+

the space of the flat sections of this bundle.
When H € P(P) is a linear element, then exmt(%) be-

longs to the good space Fy4(C F2).

On the other hand, the most interesting case is given
by quadratic form H € P(P). In this case we can solve
the differential equation explicitly, but the star exponential
belongs to the space F,4, which is difficult to treat at
present.

Although general theory related to the space Fo4 is not
yet established, we illustrate the concrete example of the
star expoenential of the quadratic forms and its applica-
tion.
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3. Star exponential of exp, t(QggU)

We very the parameter K € S¢(2) and at some K we can
obtain interesting identities in the algebra of g product.

In this section, we construct a Clifford algebra by means
of the star exponential exp, t(%) for certain K. In what
follows, we decsribe a rough sketch of construction.

First we consider a generic point in Sg(2)
/

K=(T i)es(;(z)

K

In the star product xx algebra, we write the generator u =
u1,v = uo Ssatisfying

[u, ’U]*K = —ih
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Star exponential

Then the star exponential of H = 2u *xv is explicitly given
at a general point K as

exp. 1 <2u * v)
K il

2€_t 5 [et — e—t
1hD

((et — e_t)TuQ + 2Auv + (et . €_t)7"v2)]

D= A%— (et — e_t)T/T, AN=c+et— Ii(et _ e—t) (22)

- 19(7)
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vVacuum

In the sequel, we assum 7/ = 0, that is, we take a point

K:(O"’> (23)

R T

We have a limit

lim = ex t 2u* v
w =
t——00 00 D*K 1h

= 2 exp (—m(qu _ ﬁu%) (24)
which we call a vacuum.
Then we have
Lemma 1 i) WO * W00 — WO
ii) V% OO — WOOQ *p U =— 0.
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Putting ¢t = 7, we have the identity

([ 2u *xv
exp*K T s =1

Uk (U v) = (Vs u) % v = (u*, v+ ih) x, u

we see that the star exponential satisfies

22U * v . 20V * U
U*KeXD*Kt - —exp*Kt T * e U

)
2u * v + 21k
:exp*Kt - * e U
)

ot 22U * v
= e exp*Kt * e U

Using

1h

Od

(25)

21(7)


dviout: jf�
dviout: d6�
dviout: je�

Then the integral %fgoo eXPs . t(%)dt converges and then

we define
1 O 2V * U _
5/ expy t < m > dt = (v *, u)_l_l (26)

50 1

=

and

SO0

= w kg (V*p u)__|_1 (27)
Then we have
Lemma 2 The element v is the right inverse of v satisfying

©) ®)
vk v =1 wvx*x.v=1-—1wqg
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Now we fix an integer [. By putting

t =1t = %
we obtain 2! roots of the unity
B s B |
Q= expuy 5 (242), @ = exp2 (%) (28)
such that
ol _ ol
QZ*K S -4 =1, wj =
ol

Then we have
Lemma 3 T hese satisfy

QF  w  u™ % wan . v
Ik TK Yxpg T 00 TR Vs,

_ _km_m m
=T U, K W00 ¥ Uk
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Now we take appropriate complex numbers ag, a1, ,a5_4
so that an element

2l_q
_ k
k=0
satisfies the identies
E g wyl % g 000 * g Vpe
_ ¥ Us e 5 W00 * g Vs -0 < < ol-1_1
0 i R L |

We see this is equivalent to
201
Zawkm— 1---0<m<2-1_1
= kvl — O---21_1§m§2l—1

The complex numbers ag,aq,:-- ,ao]_q are uniquely deter-
mined by these equations.
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Then we have
Lemma 4 T he element E satisfies

E*KEZI
and the element FF = 1 — E satisfies
Fx ,F=1 Ex, , F=Fx%,FE=0

Further we have
Lemma 5

2[—1 2l—1 0 2[—1
E*K (U)*K — (U)*K * K F, (U)*K * K

£
|
&
¥
VR
c
g
FIN
=

| 25(1)
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Now we set
[—1 o [—1
E=Exg ()2, n=(0)  #y F
Then we have

Theorem 3 The elements § and n of the %, product alge-
bra satisfies the identities

Exp&E=n*en=0
£*K77+£*K77=1
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End of slides. Click [END] to finish the presentation.

Thank you!
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