The Geometry of Monopoles: New and Old I

H.W. Braden

Varna, June 2011

Curve results with T.P. Northover.
Monopole Results in collaboration with V.Z. Enolski, A.D’Avanzo.
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Recall

d
» Lax Pair [E + M(¢), L(¢)] = 0 leads to the study of a curve

C: 0=det(nl,+ L(C)):= P(n,¢)

» The flows (via M) are governed by meromorphic differentials

Yoo ON C.
T 1
21 %o

» The solution constructed via 6 (sU + Cj|7)
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Recall

d
» Lax Pair [E + M(¢), L(¢)] = 0 leads to the study of a curve

C: 0=det(nl,+ L(C)):= P(n,¢)

» The flows (via M) are governed by meromorphic differentials

Yoo ON C.
U— 1
27 %o
» The solution constructed via 6 (sU + Cj|7)
» Transcendental constraints.
1. C constrained by requiring periods of a given meromorphic
differential to be specified. 2U € A

» BPS Monopoles
» Sigma Model reductions in AdS/CFT
» Harmonic Maps

2. Flows and Theta Divisor. sU+C ¢ ©

H.W. Braden The Geometry of Monopoles: New and Old |1



Spectral Curves
ccs

>[*+M() A(Q)] =0, C: 0=det(nl,+ A(C)) := P(n,¢)

P(n.¢) =n"+a(O)n" " +... 4 an(C)
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Spectral Curves
ccs

>[*+M() A(Q)] =0, C: 0=det(nl,+ A(C)) := P(n,¢)

P(n.¢) =n"+a(O)n" " +... 4 an(C)
» Where doesC lie? CC S
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Spectral Curves

ccs
> [*+’V’() A =0, C: 0=det(nl,+ A(¢)) := P(n,()

P(n.¢) =n"+a(O)n" " +... 4 an(C)

» Where does C lie? CCS
d
> Crmonopole C TPL =S (n,¢) — i TP
Minitwistor description
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Spectral Curves

ccs
>[*+/\/’() A(Q)] =0, C: 0=det(nl,+ A(C)) := P(n,¢)

P(n.¢) =n"+a(O)n" " +... 4 an(C)

» Where does C lie? CCS
> Cmonopole C TPI =38 (77, C) — ndic S TPI
Minitwistor description
Co—model C P?:=S
S = T*X Hitchin Systems on a Riemann surface *
S =K3
S a Poisson surface
separation of variables <+ Hilb[M(S)
X the total space of an appropriate line bundle £ over § <>
noncompact CY

vV vy v vy VY
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Spectral Curves

ccs
>[*+/\/’() A(Q)] =0, C: 0=det(nl,+ A(C)) := P(n,¢)

P(n.¢) =n"+a(O)n" " +... 4 an(C)

» Where does C lie? CCS
> Cmonopole C TPI =38 (77, C) — ndic S TPI
Minitwistor description
Co—model C P?:=S
S = T*X Hitchin Systems on a Riemann surface *
S =K3
S a Poisson surface
separation of variables <+ Hilb[M(S)
X the total space of an appropriate line bundle £ over § <>
noncompact CY

> Symmetry: C C P [X, Y, Z] ~ [\2X,\bY,A°Z], \ € C*

vV vy v vy VY



Spectral Curves

Extrinsic Properties: Real Structure

CcS=
C often comes with an antiholomorphic involution or real structure

» Reverse orientation of lines (n,¢) — (—7/?,—1/()
() = (' Fal-) =

r [ 1/2 r 1
(€)= |ima (3)" | Hica( - 0+ )
ar € C, x € R a,(¢) given by 2r + 1 (real) parameters
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Spectral Curves

Extrinsic Properties: Real Structure

CcS=
C often comes with an antiholomorphic involution or real structure

» Reverse orientation of lines (n,¢) — (—7/?,—1/()
() = (' Fal-) =

_\1/2
(€)= |ima (3)" | Hica( - 0+ )
ar € C, x € R a,(¢) given by 2r + 1 (real) parameters
> reality constrains the form of the period matrix

> there may be between 0 and g + 1 ovals of fixed points of the
antiholomorphic involution.

» Imposing reality can be one of the hardest steps.
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Spectral Curves

Extrinsic Properties: Rotations

» SO(3) induces an action on TP! via PSU(2)

p q 2 2
_ _~ ] €ePSU2), + =1,
<(7p> (2) lp° + |4

pC—4q 1
¢— ; n—= "3
qg¢+p (¢ +p)?
» corresponds to a rotation by # around n € 52

nisin(6/2) =Imgq, nysin (6/2) = —Reaq,
n3sin(6/2) = Im p, cos(0/2) = —Rep.
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Spectral Curves

Extrinsic Properties: Rotations

» SO(3) induces an action on TP! via PSU(2)

p q 2 2
_ _~ ] €ePSU2), + =1,
( 3 p> (2) lp° + |4

pP¢—q Ul
C—><7C+p’ T (qC+py?

» corresponds to a rotation by # around n € 52

nisin(6/2) =Imgq, nysin (6/2) = —Reaq,
n3sin(6/2) = Im p, cos(0/2) = —Rep.

» Invariant curves yield symmetric monopoles.
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Spectral Curves

Basic Quantities

» Homology basis {’y;}?ﬁl = {a;,b;}%_;
» algorithm for branched covers of P! (Tretkoff & Tretkoff)
» poor if curve has symmetries

H.W. Braden The Geometry of Monopoles: New and Old |1



Spectral Curves

Basic Quantities

» Homology basis {’y;}?ﬁl = {a;,b;}%_;
» algorithm for branched covers of P! (Tretkoff & Tretkoff)
» poor if curve has symmetries

» Holomorphic differentials du; (i =1,...,g)

H.W. Braden The Geometry of Monopoles: New and Old |1



Spectral Curves

Basic Quantities

» Homology basis {’y,} £, ={ai,b:}%
» algorithm for branched covers of P! (Tretkoff & Tretkoff)
» poor if curve has symmetries

» Holomorphic differentials du; (i =1,...,g)
» Period Matrix 7 = BA™! where

- (3)- (b
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Spectral Curves

Basic Quantities

» Homology basis {’y,} £, ={ai,b:}%
» algorithm for branched covers of P! (Tretkoff & Tretkoff)
» poor if curve has symmetries

» Holomorphic differentials du; (i =1,...,g)
» Period Matrix 7 = BA™! where

n:= (A> = f“i duj
B fb; du;
» Principle (Kontsevich, Zagier): Whenever you meet a new

number, and have decided (or convinced yourself) that it is
transcendental, try to figure out whether it is a period
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Spectral Curves

Basic Quantities

» Homology basis {’y;}?ﬁl = {a;,b;}%_;
» algorithm for branched covers of P! (Tretkoff & Tretkoff)
» poor if curve has symmetries

» Holomorphic differentials du; (i =1,...,g)
» Period Matrix 7 = BA™! where

n:= (A> = f“i duj
B fb; du;
» Principle (Kontsevich, Zagier): Whenever you meet a new

number, and have decided (or convinced yourself) that it is
transcendental, try to figure out whether it is a period

» Ko Ke =2A, degA =g—1
—Kg=0+(A—-(g—-1)Q) =9 (4)
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Spectral Curves

Use of Symmetry

Symmetry. Why? Can be used to simplify the period matrix and
integrals.
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Spectral Curves

Use of Symmetry

Symmetry. Why? Can be used to simplify the period matrix and
integrals. o € Aut(C)

o*wj = kaJ’-‘, O« (::) =M (E:) = </C4' [B)) (E:) , M € Sp(2g,7)
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Spectral Curves

Use of Symmetry

Symmetry. Why? Can be used to simplify the period matrix and
integrals. o € Aut(C)

a*wj :kajka Ox (ZI) =M (EI> = (? g) (EI> , Me Sp(2g7Z)
v (@0) () ()
w = oW = = L < MIN=TIL
fm }’i (c p)\B) " \B

Restricts 7: 7B+ 7TA— D17 — C =0
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Spectral Curves

Use of Symmetry

Symmetry. Why? Can be used to simplify the period matrix and
integrals. o € Aut(C)

a*wj :kajka Ox (ZI) =M (EI> = (? g) (EI> , Me Sp(2g7Z)
v (@0) () ()
w = oW = = L < MIN=TIL
fm }’i (c p)\B) " \B

Restricts 7: 7B +T7TA— D17 — C =0
Curves with lots of symmetries: evaluate 7 via character theory

w? = 2%6%2 — 1 (Dag2), w? = 2(2%671 — 1) (Cog1)
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Example: y? = x® 4+ bx3 + 1

> D3 symmetry s : (x,y) = (px,y) r:(x,y) = (1/x,y/x%)
p =exp(2im/3) (t:(x,y) = (x,—y))
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Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.

H.W. Braden The Geometry of Monopoles: New and Old |1



Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.

Eg b =5 Monodromy (2,4,3) at £1; (2,3,4)(1,6,5) at oo;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.
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Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.
Eg b =5 Monodromy (2,4,3) at £1; (2,3,4)(1,6,5) at oo;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.

» 3 canonical homology basis {a, ra, b, rb} with < a,b >= 1.
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Example: y? = x® 4+ bx3 + 1

> D3 symmetry s : (x,y) = (px,¥) r: (x,y) = (1/x,y/x°)
p =exp(2im/3) (t:(x,y) = (x,—y))

» Six fold cover of the y-plane. Branch points at y = +1, oo
and £,/1 — (b/2)?.
Eg b =5 Monodromy (2,4, 3) at +1; (2,3,4)(1,6,5) at oc;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.

» 3 canonical homology basis {a, ra, b, rb} with < a,b >= 1.

>»ai=a+ra, a=b—rb, by =0, bp = ra.

d d
U1=(1—X)fx, u = (1+ x) —X, rfuy =uy, rfup=—uw
y y
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Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.

Eg b =5 Monodromy (2,4, 3) at +1; (2,3,4)(1,6,5) at oc;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.
» 3 canonical homology basis {a, ra, b, rb} with < a,b >= 1.
>»ai=a+ra, a=b—rb, by =0, bp = ra.

d d
U1=(1—X)fx, u = (1+ x) —X, rfuy =uy, rfup=—uw
y

y
/Ulz/ ulz/(u1+r*u1):2/u1
ap a+ra a a
/ulz/ ulz/(ul—r*ul):o
ap b—rb b
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Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.

Eg b =5 Monodromy (2,4, 3) at +1; (2,3,4)(1,6,5) at oc;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.
» 3 canonical homology basis {a, ra, b, rb} with < a,b >= 1.

>»ai=a+ra, a=b—rb, by =0, bp = ra.

U]_:(l—X)%, u2:(]_—|—X)%, r*u1:u1, r*U2:—U2
y y
2fa uy 0 fb u1 1
0 2 [ u A> 2 [ wu 2
I_I g b — — a
fb th fb 2 (B 7 1 _fa u2
Joun — [ w 2 2 [, w2
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Example: y? = x® 4+ bx3 + 1

> Dy symmetry s : (x,y) = (px,¥) 71 (x,y) = (1/x,y/x°)
p:exp(zlﬂ-/3) (L:(X’y)*)(xvi.y))
» Six fold cover of the y-plane. Branch points at y = +1, oo

and £,/1 — (b/2)?.
Eg b =5 Monodromy (2,4, 3) at +1; (2,3,4)(1,6,5) at oc;
(12)(45)(36) at iv/21/2; and (13)(25)(46) at —iv/21/2.

» 3 canonical homology basis {a, ra, b, rb} with < a,b >= 1.

>»ai=a+ra, a=b—rb, by =0, bp = ra.

d d
U1=(1—X)7X, u = (1+ x) 7X, rfuy =uy, rfup=—uw
D3: choose b = saso sb=sa=—a—b
_ (M 1)2 _
7-_<1/2 )\2) 122 +1=0
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Calculation

Example: Klein's Curve and Problems

» C: X3Y +Y3Z+23X=0
» Aut(C) = PSL(2,7) order 168.
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Calculation

Example: Klein's Curve and Problems

» C: X3Y +Y3Z+23X=0

» Aut(C) = PSL(2,7) order 168.
—143iV7  —1-iv/7 =3+iV7

[ 4 8
—1-iV7 1+iV7  —=1-iV/7
4 2 4
—3+iV7 =17 743VT
8 4 8

> TRL =
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Calculation

Example: Klein's Curve and Problems

» C: X3Y+Y3Z+23X =0
» Aut(C) = PSL(2,7) order 168.
—143iV7  —1-/7  —34iVT7
8

[ 4
—1-iV7 1+iV7  —=1-iV/7

> TRL = Z > Z
—3+iV7 =17 743VT
8 4 8
1 e 1 1
»r=5|1 e 1), e:__lziﬁ
1 1 e
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Calculation

Example: Klein's Curve and Problems

» C: X3Y+Y3Z+23X =0
» Aut(C) = PSL(2,7) order 168.
—143iV7  —1-/7  —34iVT7

[ 4 8
—1-iV7 1+iV7  —=1-iV/7

> TRL = Z > Z
—3+iV7 =17 743VT
8 Z 8
1 e 1 1
»r==|1 e 1|, e= _—1451\ﬁ

2
1 1 e
» This depends on finding a good adapted basis simplifying the

action of Aut(C) on Hi(C,Z)

H.W. Braden The Geometry of Monopoles: New and Old |1



Calculation

Example: Klein's Curve and Problems

» C: XY+ Y324+ 23X =0
Aut(C) = PSL(2,7) order 168.
—143iV7  —1-iv/7 =3+iV7
3 4 8
—1-iV7 1+iV7  —=1-iV/7

v

> TRL = 7 2 p
—3+iV7 =17 743V/T
8 4 8
1 (¢ 11
>T=3 1 e 1], e:__lziﬁ
1 1 e
» This depends on finding a good adapted basis simplifying the

action of Aut(C) on Hi(C,Z)
Symplectic Equivalence of Period Matrices 7, 7/

M= (? g) € Sp(2g,2) = MTIM = J

, 1
(v —)M(-) =0
T
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Calculation

Example: Klein's Curve and Problems

C:w'=(z-1)(z~p)*(z—p*)* p=exp(2mi/3)

K\
@@ Z

Figure: Homology basis in (z, w) coordinates
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Calculation

Techniques and Problems

» How can one specify homology cycles?

H.W. Braden The Geometry of Monopoles: New and Old |1



Calculation

Techniques and Problems

» How can one specify homology cycles?

P o —
[ e —
Desctpton:
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Calculation

Techniques and Problems

» How can one specify homology cycles?

» How to determine M, o.(y) = M.A4? extcurves
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Calculation

Techniques and Problems

» How can one specify homology cycles?

» How to determine M, o.(y) = M.A4? extcurves

» How to determine a good basis {;}?
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Calculation

Techniques and Problems

» How can one specify homology cycles?

» How to determine M, o.(y) = M.A4? extcurves

» How to determine a good basis {;}?
Example (Fay): ¢:C —=C, ¢*°=1d, n:C—>C:=C/ < ¢ >
2k fixed points. g =2g+ k—1

a1,bl,...ag,bg,ag+1,bg+1,...ag+k+1,bg+k+1,a1/,bll,.,,ag/,bg,
where ay/, by, ..., ag/, bgr a basis of Hi(C,Z) and

aa’+¢(ua):0: ba’+¢(ba)a 1§Oé§g
a; + ¢(a;) = 0= b; + ¢(b;), g+1<i<g+k—-1
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Calculation

Symmetry and Kq

2A Q
—2KQ:¢*(2A—2(g—1)Q):/ w—2(g—1)/ w

20 Q
—2Kg.L = / oc'w—2(g — 1)/ ofw

o(24) o(Q)
—2KQ.[L—1]:/ w—2(g—1)/ w

2A Q
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Calculation

Symmetry and Kq

2A Q
—2KQ:¢*(2A—2(g—1)Q):/ w—2(g—1)/ w

20 Q
—2Kg.L = / oc'w—2(g — 1)/ ofw

o(24) o(Q)
—2KQ.[L—1]:/ w—2(g—1)/ w

2A Q

Lemma
oN =Id. If L —1 is invertible and Q a fixed point of o then Kg is
a 2N-torsion point.

—2Kg.[L—1] = nN
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Calculation

Symmetry and Kq

2A Q
—2KQ:¢*(2A—2(g—1)Q):/ w—2(g—1)/ w

20 Q
—2Kg.L = / oc'w—2(g — 1)/ ofw

o(24) o(Q)
—2KQ.[L—1]:/ w—2(g—1)/ w

2A Q

Lemma
oN =Id. If L —1 is invertible and Q a fixed point of o then Kg is
a 2N-torsion point.

—2Kg.[L—1] = nN
Corollary

¥(Q)
Lemma+1) € Aut(C). Then / w is a 2N(g — 1)-torsion point.
Q
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Calculation

Symmetry and Kq

Symmetry+Fixed point = K a torsion point.
Suppose 3 I, m € Z?€ such that mMN = IN[L — 1] = [[M — 1].
Then (—2Kq + /M) [L—1] = (n+m)Tin C

Idea: Use Smith Normal Form of M — 1 to choose /, (M —1) = m
so as to make n+ m as simple as possible.
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Calculation

Symmetry and Kq

Symmetry+Fixed point = K a torsion point.
Suppose 3 I, m € Z?€ such that mMN = IN[L — 1] = [[M — 1].
Then (—2Kq + /M) [L—1] = (n+m)Tin C

Idea: Use Smith Normal Form of M — 1 to choose /, (M —1) = m
so as to make n+ m as simple as possible.

M — 1= UDiag(dy,...,dog)V,  di|diz1, U,V € GL(2g,7Z)
(mV™1),=0 modd;, d>1
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Calculation

Symmetry and Kq

Symmetry+Fixed point = K a torsion point.
Suppose 3 I, m € Z?€ such that mMN = IN[L — 1] = [[M — 1].
Then (—2Kq + /M) [L—1] = (n+m)Tin C

Idea: Use Smith Normal Form of M — 1 to choose /, (M —1) = m
so as to make n+ m as simple as possible.
M —1 = UDiag(d,...,dxy)V, dildit1, U,V € GL(2g,Z)
(mV™1);=0 modd;, d;>1
Klein's curve, order 7 automorphism: d's=1,...,1,7. Q@ = (0,0)

—2Kq = (k,0,0,0,0,0)(M —1)~'N, ke {0,1,...,6}
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Calculation

Symmetry and Kq

Symmetry+Fixed point = K a torsion point.
Suppose 3 I, m € Z?€ such that mMN = IN[L — 1] = [[M — 1].
Then (—2Kq + /M) [L—1] = (n+m)Tin C

Idea: Use Smith Normal Form of M — 1 to choose /, (M —1) = m
so as to make n+ m as simple as possible.
M —1= UDiag(dy,...,dg)V,  dildis1, U,V € GL(2g,Z)

(mV™1);=0 modd;, d;>1

Klein's curve, order 7 automorphism: d's=1,...,1,7. Q@ = (0,0)

—2Kg = (k,0,0,0,0,0)(M —1)7'N, ke{0,1,...,6}
Order 4 Automorphism = k = 3. Thus —2Ky fixed. Final
half-period done numerically. Ky = L(37 -1,5)
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Calculation

Symmetry and ES Vector

» Ercolani-Sinha Constraints

T
1 1 1
1. U:R(fbllym’""ﬁfbg’yoo) :§n+§Tm.

2 = B HBON Pt BralQ) e g - g,

on

es=n-a+m-b
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Calculation

Symmetry and ES Vector

» Ercolani-Sinha Constraints

T
1 1 1
1. U:R(fbllym’""ﬁfbg’yoo) :§n+§Tm.

2 = B HBON Pt BralQ) e g - g,

on

es=n-a+m-b

> (n,m) <2‘) — _2(0,...,0,1)
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Calculation

Symmetry and ES Vector

» Ercolani-Sinha Constraints

T
1. U:ﬁ(fbllyoo’”"-ﬁbg’yoo) :%n—i—%Tm.

n—2 n—3
P T e 1O U s WAL 1O SIS WYY
87,’7 (23]
es=n-a+m-b
> (n,m) <2‘) — _2(0,...,0,1)
nn—2 d
> %2 invariant under o € Aut(C) <=
7

(n,m) = (n,m)M = (n, m) <é lB)>
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Spectral Curves

Intermediate Quotients

> H< G=Aut(C) ”l ”l
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Spectral Curves

Intermediate Quotients

—1 t
ttx — X

H-t1x H-
> t yields a symmetry of C/H if and only if t 6 Ng(H)
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Spectral Curves

Intermediate Quotients

—1 t
t7-x — X
» H< G=Aut(C) Hl Hl
H-t1x H-
> t yields a symmetry of C/H if and only if t 6 Ng(H)

1. Seek subnormal series of G: 1 =Ag<A;<---<A,=G.
2. Caution: quotient curve may have symmetries not arising from
the original curve.
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Spectral Curves

Intermediate Quotients

—1 t
t e x — X
» H< G =Aut(C) Hl Hl
H-t 1x H -
» t yields a symmetry of C/H if and only if t 6 Ng(H)

1. Seek subnormal series of G: 1 =Ag<A;<---<A,=G.
2. Caution: quotient curve may have symmetries not arising from
the original curve.

» Can we explicitly determine the curve C/H?
¢ : C < P? the vanishing of a hom poly. £ = :*(O(1))
3 k £k ample

R = @n>0H(X, (L)®"), € = Proj(R).
Provided G commutes with the C* action
P24 / /G = Proj C[xp, x1, x2]¢, degx; = a;



Example

0=2°+XY(X+Y)

»ECP?: 0=Z3+XY(X+Y)
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Example

0=2Z>+XY(X+Y)

»ECP?: 0=Z3+XY(X+Y)

1 1
» Weierstrass V2 = U3+ZY6’ U=-2vY, V:XY2+§Y3
» (3 action: X — —(X +Y), Y — X, Zw—Z.
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Example

0=2°+XY(X+Y)

»ECP?: 0=Z3+XY(X+Y)
1 1
» Weierstrass V2 = U3+ZY6’ U=-2vY, V:XY2+§Y3

» (3 action: X — —(X +Y), Y — X, Zw—Z.
> Invariant Z. Semi-invariants
(X = p?Y) = p(X = p?Y), (X =pY) = p?(X = p?Y).
3

deg. ‘ 1 ‘ 2 ‘
invt. | Z | (X = pY)(X=p?Y), Z% | @, 3,7,6
a=(X-pY)3 B=(X-pY) v _/3fZ3,

§=iV3(X —pY)X—p?Y)Z

H.W. Braden The Geometry of Monopoles: New and Old |1



Example

0=2°+XY(X+Y)

»ECP?: 0=Z3+XY(X+Y)

1 1
Weierstrass V2 = U3+ZY6’ U=-2vY, V:XY2+§Y3
Cs action: X — —(X +Y), Y — X, Zw—Z.

Invariant Z. Semi-invariants
(X = p?Y) = p(X = p?Y), (X =pY) = p?(X = p?Y).
3

v

v

v

deg. ‘ 1 ‘ 2 ‘
invt. | Z | (X = pY)(X=p?Y), Z% | @, 3,7,6
a=(X-pY)3 B=(X-pY) v _/3fZ3,

§=iV3(X —pY)X—p?Y)Z
» B=a+7, 0=256+ay(a+n)
Cla, 6,71

Ring of invariants for quotient curve R =
& d 5 +ay(a+7)

» Proj(R) =& 3:1 unbranched covering.



» We have seen how symmetry simplifies
1. Calculation of matrix of periods and 7

2. Calculation of Kg
3. Calculation of ES vector U

H.W. Braden The Geometry of Monopoles: New and Old |1



» We have seen how symmetry simplifies
1. Calculation of matrix of periods and 7
2. Calculation of Kg
3. Calculation of ES vector U
» We will see how symmetry simplifies 6 (sU + C|7)
> Have yet to solve any of the transcendental constraints on C

1. ES constraints: 2U € A<= U
2. Flows and Theta Divisor: sU+C ¢ ©
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