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Integrable MNLS and Lax representations

A.III-type MNLS or the vector NLS (the Manakov model) � Manakov,
1974::

HA.III =

∫ ∞

−∞
dx
(
(q⃗x

†, q⃗x)− (q⃗ †, q⃗)2
)
,

iq⃗ t + q̄ xx + 2(q⃗ †, q⃗ )q⃗ (x, t) = 0,

BD.I-type MNLS:

HBD.I =

∫ ∞

−∞
dx

(
(q⃗x

†, q⃗x)− (q⃗ †, q⃗)2 +
1

2
|(q⃗, s0q⃗)|2

)

iq⃗t + q⃗xx + 2(q⃗†, q⃗)q⃗(x, t)− (q⃗, s0q⃗)s0q⃗
∗(x, t) = 0, s0 =

 0 0 1
0 −1 0
1 0


[L(λ),M(λ)] = 0, identically w.r. to λ:
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A.III-type MNLS

Lψ(x, λ) ≡ i
dψ

dx
+ q(x)ψ(x, λ)− λJψ(x, λ) = 0, (1)

Q(x, t) =

(
0 q⃗T (x, t)

−q⃗∗(x, t) 0

)
, J =

(
1 0
0 −11n

)
.

Mψ ≡ i
dψ

dt
+
(
V0(x, t)− V0,+ + 2λQ(x, t)− 2λ2J

)
ψ(x, t, λ)

= ψ(x, t, λ)C(λ),

V0(x, t) =
[
ad−1

J Q,Q(x, t)
]
+ 2iad−1

J Qx,

0-3



BD.I-type MNLS

Lψ(x, t, λ) ≡ i∂xψ + (Q(x, t)− λJ)ψ(x, t, λ) = 0.

Mψ(x, t, λ) ≡ i∂tψ + (V0(x, t) + λV1(x, t)− λ2J)ψ(x, t, λ) = 0,

V1(x, t) = Q(x, t), V0(x, t) = iad−1
J

dQ

dx
+

1

2

[
ad−1

J Q,Q(x, t)
]
.

where J = diag(1, 0, . . . 0,−1) and

Q =

 0 q⃗T 0
p⃗ 0 s0q⃗
0 p⃗T s0 0

 , S0 =
2r+1∑
k=1

(−1)k+1Ek,2r+2−k =

 0 0 1
0 −s0 0
1 0 0

 ,

(2)
Here (Ekn)ij = δikδnj and the 2r− 1-vectors q⃗ and p⃗ = q⃗∗ take the form

q⃗ = (q1, . . . , qr−1, q0, q−1, . . . , q−r+1)
T ,
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BEC with hyper�ne structure

23Na ⇔ F = 1 87Rb ⇔ F = 2
see Wadati et al (2004), (2006), (2007); Ohmi & Machida (1998);
Kuwamoto et al (2004); Gerdjikov et al (2007), (2008)

The assembly of atoms in the hyper�ne state of spin F is described
by a normalized spinor wave vector with 2F + 1 components

Φ(x, t) = (ΦF (x, t), . . . ,Φ0(x, t), . . . ,Φ−F (x, t))
T

Ginzburg-Pitaevsky equation in the one-dimensional approximation:

i
∂Φ

∂t
=
δEGP[Φ]

δΦ∗ . (3)

where for F = 1 the energy functional is given by:

EGP =

∫
dx

{
~2

2m
|∂xΦ|2 +

c̄0 + c̄2
2

[
(Φ†,Φ)2 − c̄0

2

∣∣2Φ1Φ−1 − Φ2
0

∣∣2] .
the e�ective 1D couplings c̄0,2 are represented by

c̄0 = c0/2a
2
⊥, c̄2 = c2/2a

2
⊥, (4)
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where a⊥ is the size of the transverse ground state. In this expression,

c0 = π~2(a0 + 2a2)/3m, c2 = π~2(a2 − a0)/3m, (5)

where af � s-wave scattering lengths; m is the mass of the atom.
Special (integrable) choice for the coupling constants c̄0 = c̄2 ≡ −c <

0, equivalently scattering lengths 2a0 = −a2 > 0. In the dimensionless
form: Φ → {Φ1,Φ0,Φ−1}T the corresponding GPE take the form:

i∂tΦ1 + ∂2xΦ1 + 2(|Φ1|2 + 2|Φ0|2)Φ1 + 2Φ∗
−1Φ

2
0 = 0,

i∂tΦ0 + ∂2xΦ0 + 2(|Φ−1|2 + |Φ0|2 + |Φ1|2)Φ0 + 2Φ∗
0Φ1Φ−1 = 0, (6)

i∂tΦ−1 + ∂2xΦ−1 + 2(|Φ−1|2 + 2|Φ0|2)Φ−1 + 2Φ∗
1Φ

2
0 = 0.

F = 2 hyper�ne state is described by a 5-component spinor wave
vector

Φ(x, t) = (Φ2(x, t),Φ1(x, t),Φ0(x, t),Φ−1(x, t),Φ−2(x, t))
T , (7)

EGP[Φ] =

∫ ∞

−∞
dx

(
~2

2m
|∂xΦ|2 +

ϵc0
2
n2 +

c2
2
f2 +

ϵc4
2

|Θ|2
)
, (8)
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ϵ = ±1, n = (Φ⃗ †, Φ⃗) =

2∑
α=−2

ΦαΦ
∗
α,

Θ = (Φ⃗, s0Φ⃗) = 2Φ2Φ−2 − 2Φ1Φ−1 +Φ2
0.

Choosing c2 = 0, c4 = 1 and c0 = −2 we obtain

i∂tΦ±2 + ∂xxΦ±2 = −2ϵ(Φ⃗, Φ⃗∗)Φ±2 + ϵ(2Φ2Φ−2 − 2Φ1Φ−1 +Φ2
0)Φ

∗
∓2,

i∂tΦ±1 + ∂xxΦ±1 = −2ϵ(Φ⃗, Φ⃗∗)Φ±1 − ϵ(2Φ2Φ−2 − 2Φ1Φ−1 +Φ2
0)Φ

∗
∓1,

i∂tΦ0 + ∂xxΦ0 = −2ϵ(Φ⃗, Φ⃗∗)Φ±0 + ϵ(2Φ2Φ−2 − 2Φ1Φ−1 +Φ2
0)Φ

∗
0.

which is integrable by the inverse scattering method.
Lax pairs for systems on symmetric spaces � Fordy, Kulish (1983)

For our system we have BD.I-type symmetric spaces:

≃ SO(n + 2)/SO(2)× SO(n)

with n = 3 and n = 5 respectively.
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Symmetric and homogeneous spaces

Symmetric space: M is globally symmetric if each its point p is isolated
invariant point under an involutive isometry:

K(M) ≡ KMK−1 = M, K2 = 11.

Cartan has classi�ed all such involutions.
M ≡ G/H where G is simple and H is semisimple. Normally

H ≡ {K ∈ G, such that KJK−1 = J, J ∈ H}.

Local coordinates:
Q(x) = [J,Q′(x)].

Typically H is simple:

J =

(
11 0
0 −11

)
, Q(x) =

(
0 Q+(x)

Q−(x) 0

)
,
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But for BD.I-type symmetric spaces H is semi-simple: H ≃ SO(2) ⊗
SO(n)

J =

 1 0 0
0 0 0
0 0 −1

 , Q =

 0 q⃗T 0
p⃗ 0 s0q⃗
0 p⃗T s0 0

 ,

E�ectively it is enough to properly specify G and J in order to de-
termine M. The corresponding Lie algebra g acquires Z2-grading:

g = g(0) + g(1),

g(0) ≡ {X : X ∈ g K(X) = X}, g(1) ≡ {Y : Y ∈ g K(Y ) = −Y },
The grading property:

[g(0), g(0)] ∈ g(0), [g(0), g(1)] ∈ g(1), [g(1), g(1)] ∈ g(0)

The set of positive roots ∆+ also splits into two subsets:

∆+ = ∆+
0 ∪∆+

1 ,

∆+
0 ≡ {α : α(J) = 0} ∆+

1 ≡ {α : α(J) = a > 0}
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Inverse scattering method and reconstruction

of potential from minimal scattering data

Solving the direct and the inverse scattering problem (ISP) for L uses
the Jost solutions

lim
x→−∞

ϕ(x, t, λ)eiλJx = 11, lim
x→∞

ψ(x, t, λ)eiλJx = 11 (9)

and the scattering matrix T (λ, t) ≡ ψ−1ϕ(x, t, λ). We use the following
block-matrix structure of T (λ, t)

T (λ, t) =

m+
1 −b⃗−T c−1

b⃗+ T22 −s0B⃗−

c+1 B⃗+T s0 m−
1

 , (10)
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Theorem. If Q(x, t) evolves according to (6) then the scattering
matrix and its elements satisfy the following linear evolution equations

i
d⃗b±

dt
± λ2⃗b±(t, λ) = 0, i

dB⃗±

dt
± λ2B⃗±(t, λ) = 0,

i
dm±

1

dt
= 0, i

dT±
22

dt
= 0,

(11)

Consequence: MNLS have in�nite number of integrals of motion. In-
deed m±

1 (λ) are generating functionals of the integrals of motion.
Solving MNLS by the Inverse scattering method:

q⃗(x, t = 0) −→ L0 L|t>0 −→ q⃗(x, t)

I

y xIII

T (0, λ)
II−→ T (t, λ)

(12)

Important: All steps reduce to linear integral equations.
The ISP is reduced to a Riemann-Hilbert problem (RHP) for the

fundamental analytic solution (FAS) χ±(x, t, λ). Their construction is
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based on the generalized Gauss decomposition of T (λ, t)

T (λ) = T−
J (λ)D+

J (λ)Ŝ
+
J (λ) = T+

J (λ)D−
J (λ)Ŝ

−
J (λ), (13)

Here S±
J , T

±
J upper- and lower-block-triangular matrices, while D±

J (λ)
are block-diagonal matrices with the same block structure as T (λ, t)
above. The explicit expressions of the Gauss factors in terms of the ma-
trix elements of T (λ, t) is

S+
J (t, λ) =

 1 τ⃗ +,T c+1
0 11 s0τ⃗

+

0 0 1

 , S−
J (t, λ) =

 1 0 0
−τ⃗ −

11 0
c−1 −τ⃗ −,T s0 1

 ,

τ+ =
b−

m+
1

, τ− =
B+

1

m−
1

, ρ+ =
b+

m+
1

, ρ− =
B−

1

m−
1

,

T+
J (t, λ) =

 1 −ρ⃗−,T c′,−1
0 11 −s0ρ⃗−

0 0 1

 , T−
J (t, λ) =

 1 0 0
ρ⃗+

11 0

c′,+1 ρ⃗+,T s0 1

 ,
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D+
J =

m+
1 0 0
0 m+

2 0
0 0 1/m+

1

 , D−
J =

 1/m−
1 0 0

0 m−
2 0

0 0 m−
1

 ,

and

m+
2 = T22 +

b⃗+b⃗−T

m+
1

, m−
2 = T22 +

s0⃗b
−b⃗+T s0

m−
1

.

Then the FAS can be de�ned as:

χ±(x, t, λ) = ϕ(x, t, λ)S±
J (t, λ) = ψ(x, t, λ)T∓

J (t, λ)D±
J (λ). (14)

The FAS for real λ are linearly related

χ+(x, t, λ) = χ−(x, t, λ)GJ(λ, t), G0,J(λ, t) = S−
J (λ, t)S+

J (λ, t).
(15)

One can rewrite eq. (15) in an equivalent form for the FAS ξ±(x, t, λ) =
χ±(x, t, λ)eiλJx which satisfy also the relation

lim
λ→∞

ξ±(x, t, λ) = 11. (16)

0-13



Then these FAS satisfy

ξ+(x, t, λ) = ξ−(x, t, λ)GJ(x, λ, t), GJ(x, λ, t) = e−iλJxG−
0,J(λ, t)e

iλJx.
(17)

Obviously the sewing function Gj(x, λ, t) is uniquely determined by the
Gauss factors S±

J (λ, t).
Given the solution ξ±(x, t, λ) one recovers Q(x, t) via the formula

Q(x, t) = lim
λ→∞

λ
(
J − ξ±Jξ̂±(x, t, λ)

)
. (18)

We impose also the standard reduction:

Q(x, t) = ϵQ†(x, t) ⇔ pk = ϵq∗k.

As a consequence we have

ρ⃗−(λ, t) = ϵρ⃗+,∗(λ, t), τ⃗−(λ, t) = ϵτ⃗+,∗(λ, t).
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Zakharov-Shabat dressing method and soliton

solutions

Starting from a regular solution χ±
0 (x, t, λ) of L0(λ) with potentialQ(0)(x, t)

construct new singular solutions χ±
1 (x, t, λ) of L with a potentialQ(1)(x, t)

with two additional singularities located at prescribed positions λ±1 ; the
reduction p⃗ = q⃗∗ ensures that λ−1 = (λ+1 )

∗. It is related to the regular
one by a dressing factor u(x, t, λ)

χ±
1 (x, t, λ) = u(x, λ)χ±

0 (x, t, λ)u
−1
− (λ). u−(λ) = lim

x→−∞
u(x, λ) (19)

Note that u−(λ) is a block-diagonal matrix. u(x, λ) must satisfy

i∂xu+Q(1)(x)u− uQ(0)(x)− λ[J, u(x, λ)] = 0, (20)

and the normalization condition limλ→∞ u(x, λ) = 11.
The construction of u(x, λ) is based on an appropriate anzats speci-
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fying explicitly the form of its λ-dependence:

u(x, λ) = 11+(c(λ)−1)P (x, t)+

(
1

c(λ)
− 1

)
P (x, t), P = S−1

0 PTS0,

(21)
where P (x, t) and P (x, t) are projectors which satisfy PP (x, t) = 0.

P (x, t) =
|n1(x, t)⟩⟨n†1(x, t)|
⟨n†1(x, t)|n1(x, t)⟩

,

|n1(x, t)⟩ = χ+
0 (x, t, λ

+
1 )|n0,1⟩, c(λ) =

λ− λ+1
λ− λ−1

, ⟨n0,1|S0|n0,1⟩ = 0.

(22)

Taking the limit λ→ ∞ in eq. (28) we get that

Q(1)(x, t)−Q(0)(x, t) = (λ−1 − λ+1 )[J, P (x, t)− P (x, t)].

If Q(0) = 0 and put λ±1 = µ± iν, χ+
0 (x, t, λ) = e−iλJx:

q
(1s)
k (x, t) = −2iν

(
P1k(x, t) + (−1)kPk̄,2r+1(x, t)

)
, (23)
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where k̄ = 2r + 2− k.
The one-soliton solution reads

qk =
−iνe−iµ(x−vt−δ0)

cosh 2z +∆2
0

(
αke

z−iϕk + (−1)kαk̄e
−z+iϕk̄

)
,

v =
ν2 − µ2

µ
, u = −2µ, z(x, t) = ν(x− ut− ξ0), (24)

ξ0 =
1

2ν
ln

|n0,2r+1|
|n0,1|

, αk =
|n0,k|√

|n0,1||n0,2r+1|
, ∆2

0 =

∑2r
k=2 |n0,k|2

2|n0,1n0,2r+1|
,

and δ0 = arg n0,1/µ = − argn0,2r+1/µ, ϕk = argn0,k. The polarization
vectors satisfy the following relation

r∑
k=1

2(−1)k+1n0,kn0,k̄ + (−1)rn20,r+1 = 0. (25)

Thus for r = 2 we identify Φ1 = q2, Φ0 = q3/
√
2 and Φ3 = q4 and we
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obtain the following solutions for the equation (6)

Φ±1 = −
2iν

√
α2α4e

−iµ(x−vt−δ±1)

cosh 2z +∆2
0

(cosϕ±1 cosh z±1 − i sinϕ±1 sinh z±1) ,

δ±1 = δ0 ∓
ϕ2 − ϕ4

2µ
, ϕ±1 =

ϕ2 + ϕ4
2

z±1 = z ∓ 1

2
ln
α4

α2
,

Φ0 = −
√
2iνα3e

−iµ(x−vt−δ0)

cosh 2z +∆2
0

(cosϕ3 sinh z − i sinϕ3 cosh z) .

For r = 3 we identify Φ2 = q2, Φ1 = q3, Φ0 = q4, Φ−1 = q5 and
Φ−2 = q6, so that the one-soliton solution for equation (??) reads

Φ±2 = −
2iν

√
α2α6e

−iµ(x−vt−δ±2)

cosh 2z +∆2
0

(cosϕ±2 cosh z±2 − i sinϕ±2 sinh z±2) ,

Φ±1 = −
2iν

√
α3α5e

−iµ(x−vt−δ±1)

cosh 2z +∆2
0

(cosϕ±1 sinh z±1 − i sinϕ±1 cosh z±1) ,

δ±2 = δ0 ∓
ϕ2 − ϕ6

2µ
, ϕ±2 =

ϕ2 + ϕ6
2

z±2 = z ∓ 1

2
ln
α6

α2
,
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δ±1 = δ0 ∓
ϕ3 − ϕ5

2µ
, ϕ±1 =

ϕ3 + ϕ5
2

, z±1 = z ∓ 1

2
ln
α5

α3
,

Φ0 = −2iνα4e
−iµ(x−vt−δ0)

cosh 2z +∆2
0

(cosϕ4 cosh z − i sinϕ4 sinh z) .

Choosing appropriately the polarization vectors |n⟩ we are able to repro-
duce the soliton solutions obtained by Wadati et al. both for F = 1 and
F = 2 BEC.

Alternative methods and N-soliton solutions

In order to obtain N -soliton solutions one has to apply dressing proce-
dure with a 2N -poles dressing factor of the form

u(x, λ) = 11+
N∑

k=1

(
Ak(x)

λ− λ+k
+

Bk(x)

λ− λ−k

)
. (26)
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The N -soliton solution itself can be generated via the following formula

QN,s(x) =
N∑

k=1

[J,Ak(x) +Bk(x)]. (27)

The dressing factor u(x, λ) must satisfy the equation

i∂xu+QN,su− λ[J, u] = 0 (28)

and the normalization condition limλ→∞ u(x, λ) = 11. The construction
of u(x, λ) ∈ SO(n+ 2) is based on an appropriate anzatz specifying the
form of its λ-dependence [?, ?]

The residues of u admit the following decomposition

Ak(x) = Xk(x)F
T
k (x), Bk(x) = Yk(x)G

T
k (x).

where all matrices involved are supposed to be rectangular and of max-
imal rank s. By comparing the coe�cients before the same powers of
λ− λ±k in (28) we convince ourselves that the factors Fk and Gk can be
expressed by the fundamental analytic solutions χ±

0 (x, λ) as follows

FT
k (x) = FT

k,0[χ
+
0 (x, λ

+
k )]

−1, GT
k (x) = GT

k,0[χ
−
0 (x, λ

−
k )]

−1.
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The constant rectangular matrices Fk,0 and Gk,0 obey the algebraic re-
lations

FT
k,0S0Fk,0 = 0, GT

k,0S0Gk,0 = 0.

The other two types of factorsXk and Yk are solutions to the algebraic
system

S0Fk = Xkαk +
∑
l ̸=k

XlF
T
l S0Fk

λ+l − λ+k
+
∑
l

YlG
T
l S0Fk

λ−l − λ+k
,

S0Gk =
∑
l

XlF
T
l S0Gk

λ+l − λ−k
+ Ykβk +

∑
l ̸=k

YlG
T
l S0Gk

λ−l − λ−k
.

(29)

The square s× s matrices αk(x) and βk(x) introduced above depend on
χ+
0 and χ−

0 and their derivatives by λ as follows

αk(x) = −FT
0,k[χ

+
0 (x, λ

+
k )]

−1∂λχ
+
0 (x, λ

+
k )S0F0,k + α0,k,

βk(x) = −GT
0,k[χ

−
0 (x, λ

−
k )]

−1∂λχ
−
0 (x, λ

−
k )S0G0,k + β0,k.

(30)

Below for simplicity we will choose Fk and Gk to be 2r+1-component
vectors. Then one can show that αk = βk = 0 which simpli�es the system
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(29). We also introduce the following more convenient parametrization
for Fk and Gk, namely (see eq. (32)):

Fk(x, t) = S0|nk(x, t)⟩ =

 e−zk+iϕk

−
√
2s0ν⃗0k

ezk−iϕk

 , Gk(x, t) = |n∗k(x, t)⟩ =

 ezk+iϕk

√
2ν⃗0k

∗

e−zk−iϕk

 ,

(31)
where ν⃗0k are constant 2r − 1-component polarization vectors and

zj = νj(x+ 2µjt) + ξ00, ϕj = µjx+ (µ2
j − ν2j )t+ δ00,

⟨nTj (x, t)|S0|nj(x, t)⟩ = 0, or (ν⃗0,js0ν⃗0,j) = 1.
(32)

The polarization vectors automatically satisfy ⟨nj(x, t)|S0|nj(x, t)⟩ = 0.
Thus for N = 1 we get the system:

|Y1⟩ = − (λ+1 − λ−1 )|n1⟩
⟨n†1|n1⟩

, |X1⟩ =
(λ+1 − λ−1 )S0|n∗1⟩

⟨n†1|n1⟩
, (33)
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which is easily solved. As a result for the one-soliton solution we get:

q⃗1s = − i
√
2(λ+1 − λ−1 )e

−iϕ1

∆1

(
e−z1s0|ν⃗01⟩+ ez1 |ν⃗∗01⟩

)
, ∆1 = cosh(2z1)+⟨ν⃗†01|ν⃗01⟩.

(34)
For n = 3 we put ν0k = |ν0k|eα0k get:

Φ1s;±1 = −
√
2|ν01;1ν01;3|(λ+1 − λ−1 )

∆1
e−iϕ1±iβ13

× (cosh(z1 ∓ ζ01) cos(α13)− i sinh(z1 ∓ ζ01) sin(α13)) ,

Φ1s;0 = −
√
2|ν01;2|(λ+1 − λ−1 )

∆1
e−iϕ1

× (sinh z1 cos(α02) + i cosh z1 sin(α02)) ,

β13 =
1

2
(α03 − α01), ζ01 =

1

2
ln

|ν01;3|
|ν01;1|

, α13 =
1

2
(α03 + α01),

(35)

Note that the `center of mass` of Φ1s;1 (resp. of Φ1s;−1) is shifted with
respect to the one of Φ1s;0 by ζ01 to the right (resp to the left); besides
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|Φ1s;1| = |Φ1s;−1|, i.e. they have the same amplitudes.
For n = 5 we put ν0k = |ν0k|eα0k and get analogously:

Φ1s;±2 = −
√
2|ν01;1ν01;5|(λ+1 − λ−1 )

∆1
e−iϕ1±iβ15

× (cosh(z1 ∓ ζ01) cos(α15)− i sinh(z1 ∓ ζ01) sin(α15)) ,

Φ1s;±1 =

√
2|ν01;2ν01;4|(λ+1 − λ−1 )

∆1
e−iϕ1±iβ24

× (cosh(z1 ∓ ζ02) cos(α24)− i sinh(z1 ∓ ζ01) sin(α24)) ,

Φ1s;0 = −
√
2|ν01;3|(λ+1 − λ−1 )

∆1
e−iϕ1 (cosh z1 cos(α03)− i sinh z1 sin(α03)) ,

β15 =
1

2
(α05 − α01), ζ01 =

1

2
ln

|ν01;5|
|ν01;1|

, α15 =
1

2
(α05 + α01),

β24 =
1

2
(α04 − α02), ζ02 =

1

2
ln

|ν01;4|
|ν01;2|

, α24 =
1

2
(α04 + α02),

(36)

Similarly the `center of mass` of Φ1s;2 and Φ1s;1 (resp. of Φ1s;−2 and
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Φ1s;−1) are shifted with respect to the one of Φ1s;0 by ζ01 and ζ02 to the
right (resp to the left); besides |Φ1s;2| = |Φ1s;−2| and |Φ1s;1| = |Φ1s;−1|.

For N = 2 we get:

|n1(x, t)⟩ =
X2(x, t)f21

λ+2 − λ+1
+
Y1(x, t)κ11

λ−1 − λ+1
+
Y2(x, t)κ21

λ−2 − λ+1
,

|n2(x, t)⟩ =
X1(x, t)f12

λ+1 − λ+2
+
Y1(x, t)κ12

λ−1 − λ+2
+
Y2(x, t)κ22

λ−2 − λ+2
,

S0|n∗1(x, t)⟩ =
X1(x, t)κ11

λ+2 − λ+1
+
X2(x, t)κ11

λ+2 − λ−1
+
Y2(x, t)f

∗
21

λ−2 − λ−1
,

S0|n∗2(x, t)⟩ =
X1(x, t)κ21

λ+1 − λ−2
+
X2(x, t)κ22

λ+2 − λ−2
+
Y1(x, t)f

∗
12

λ−1 − λ−2
,

(37)

where

κkj(x, t) = ezk+zj+i(ϕk−ϕj) + e−zk−zj−i(ϕk−ϕj) + 2
(
ν⃗ †

0k, ν⃗0j

)
,

fkj(x, t) = ezk−zj−i(ϕk−ϕj) + ezj−zk+i(ϕk−ϕj) − 2
(
ν⃗T0ks0ν⃗0j

)
,

(38)
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In other words:

MX⃗ ≡


0 f21

λ+
2 −λ+

1

κ11

λ−
1 −λ+

1

κ21

λ−
2 −λ+

1
f12

λ+
1 −λ+

2

0 κ12

λ−
1 −λ+

2

κ22

λ−
2 −λ+

2

κ11

λ+
1 −λ−

1

κ12

λ+
2 −λ−

1

0
f∗
21

λ−
2 −λ−

1

κ21

λ+
1 −λ−

2

κ22

λ+
2 −λ−

2

f∗
12

λ−
1 −λ−

2

0



X1

X2

Y1
Y2

 =


|n1⟩
|n2⟩
S0|n∗1⟩
S0|n∗2⟩

 .

(39)
We can rewrite M in block-matrix form:

M =

(
M11 M12

M21 M22

)
, M22 = M∗

11, M21 = −MT
12,

M11 =
f12

λ+2 − λ+1

(
0 1
−1 0

)
, M12 =

(
κ11

λ−
1 −λ+

1

κ21

λ−
2 −λ+

1
κ12

λ−
1 −λ+

2

κ22

λ−
2 −λ+

2

)
.

(40)

The inverse of M is given by:

M−1 =

(
(M11 −M12M̂

∗
11M21)

−1 −(M11 −M12M̂
∗
11M21)

−1M12M̂
∗
11

−(M∗
11 −M21M̂11M12)

−1M21M̂11 (M∗
11 −M21M̂11M12)

−1

)
,

(41)
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One can check by direct calculation that:

M11 −M12M̂
∗
11M21 =

f∗12
λ−2 − λ−1

Z

(
0 1
−1 0

)
,

M∗
11 −M21M̂11M12 =

f12

λ+2 − λ+1
Z

(
0 1
−1 0

)
,

Z =

(
|f12|2

|λ+2 − λ+1 |2
− κ12κ21

|λ+2 − λ−1 |2
+
κ11κ22
4ν1ν2

)
,

(42)

Finally we get:

M−1 =
1

Z


0

f∗
12

λ−
1 −λ−

2

− κ22

λ+
2 −λ−

2

κ12

λ+
2 −λ−

1

− f∗
12

λ−
1 −λ−

2

0 κ21

λ+
1 −λ−

2

− κ11

λ+
1 −λ−

1
κ22

λ+
2 −λ−

2

− κ21

λ+
1 −λ−

2

0 − f12
λ+
1 −λ+

2

− κ12

λ+
2 −λ−

1

κ11

λ+
1 −λ−

1

f12
λ+
2 −λ+

1

0

 , (43)
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From eqs. (39) and (43) we obtain:

|X1⟩ =
1

Z

(
f∗12

λ−1 − λ−2
|n2⟩ −

κ22

λ+2 − λ−2
S0|n∗1⟩+

κ12

λ+2 − λ−1
S0|n∗2⟩

)
,

|X2⟩ =
1

Z

(
− f∗12
λ−1 − λ−2

|n1⟩+
κ21

λ+1 − λ−2
S0|n∗1⟩ −

κ11

λ+1 − λ−1
S0|n∗2⟩

)
,

|Y1⟩ =
1

Z

(
κ22

λ+2 − λ−2
|n1⟩ −

κ21

λ+1 − λ−2
|n2⟩ −

f12

λ+1 − λ+2
S0|n∗2⟩

)
,

|Y2⟩ =
1

Z

(
− κ12

λ+2 − λ−1
|n1⟩+

κ11

λ+1 − λ−1
|n2⟩+

f12

λ+2 − λ+1
S0|n∗1⟩

)
,

(44)

Inserting this result into eq. (27) we obtain the following expression
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for the 2-soliton solution of the MNLS:

Q2s(x, t) = [J,A1 +B1 +A2 +B2] =
1

Z
[J,C(x, t)− S0C

T (x, t)S0],

C(x, t) =
κ22

λ+2 − λ−2
|n1⟩⟨n†1| −

κ12

λ+2 − λ−1
|n1⟩⟨n†2| −

κ21

λ+1 − λ−2
|n2⟩⟨n†1|

+
κ11

λ+1 − λ−1
|n2⟩⟨n†2| −

f∗12
λ−1 − λ−2

|n1⟩⟨n2|S0 −
f12

λ+1 − λ+2
S0|n∗2⟩⟨n

†
1|.

(45)
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Two Soliton interactions

κ22 =

{
e2τ exp(ν2z1/ν1) + 2C1, for τ → ∞,
e−2τ exp(−ν2z1/ν1) + 2C1, for τ → −∞,

κ12 =

{
eτ exp((1 + ν2/ν1)z1 + i(ϕ1 − ϕ2)) + O(1), for τ → ∞,
e−τ exp(−(1 + ν2/ν1)z1 − i(ϕ1 − ϕ2)) + O(1), for τ → −∞,

κ21 =

{
eτ exp((1 + ν2/ν1)z1 − i(ϕ1 − ϕ2)) + O(1), for τ → ∞,
e−τ exp(−(1 + ν2/ν1)z1 + i(ϕ1 − ϕ2)) + O(1), for τ → −∞,

f12 =

{
eτ exp(−(1− ν2/ν1)z1 + i(ϕ1 − ϕ2)) + O(1), for τ → ∞,
e−τ exp((1− ν2/ν1)z1 − i(ϕ1 − ϕ2)) + O(1), for τ → −∞,

(46)
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After somewhat lengthy calculations we get:

lim
τ→∞

q⃗2s(x, t) = − i
√
2ν1e

−i(ϕ1−α+) (e−z1−r+s0|ν⃗01⟩+ ez1+r+ |ν⃗∗01⟩)
cosh(2(z1 + r+)) + (ν⃗†01, ν⃗01)

,

= q⃗
(1)
1s (z1 + r+, ϕ1 − α+)

lim
τ→−∞

q⃗2s(x, t) =
i
√
2ν1e

−i(ϕ1+α+) (e−z1+r+s0|ν⃗01⟩+ ez1−r+ |ν⃗∗01⟩)
cosh(2(z1 − r+)) + (ν⃗†01, ν⃗01)

= q⃗
(1)
1s (z1 − r+, ϕ1 + α+).

(47)

where

r+ = ln

∣∣∣∣λ+1 − λ+2
λ+1 − λ−2

∣∣∣∣ , α+ = arg
λ+1 − λ+2
λ+1 − λ−2

.
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The Generalized Fourier Transforms for Non-

regular J

We show that the ISM can be viewed as generalized Fourier transform
(GFT). We determine explicitly the proper generalizations of the usual
exponents. We also introduce a skew�scalar product onM which provides
it with a symplectic structure.

The Wronskian relations

Along with the Lax operator we consider associated systems:

i
dψ̂

dx
− ψ̂(x, t, λ)U(x, t, λ) = 0, U(x, λ) = Q(x)− λJ, (48)

i
dδψ

dx
+ δU(x, t, λ)ψ(x, t, λ) + U(x, t, λ)δψ(x, t, λ) = 0 (49)

i
dψ̇

dx
− λJψ(x, t, λ) + U(x, t, λ)ψ̇(x, t, λ) = 0 (50)
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where δψ corresponds to a given variation δQ(x, t) of the potential, while
by dot we denote the derivative with respect to the spectral parameter.

We start with the identity:

(χ̂Jχ(x, λ)− J)|∞x=−∞ = i

∫ ∞

−∞
dx χ̂[J,Q(x)]χ(x, λ), (51)

where χ(x, λ) can be any fundamental solution of L.
One can use the asymptotics of χ±(x, λ) for x → ±∞to express the

l.h.sides of the Wronskian relations in terms of the scattering data. Then

⟨
(
χ̂±Jχ±(x, λ)− J

)
Eβ⟩

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx ⟨

(
[J,Q(x)]e±β (x, λ)

)
⟩,

⟨
(
χ̂′,±Jχ′,±(x, λ)− J

)
Eβ⟩

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx ⟨

(
[J,Q(x)]e′,±β (x, λ)

)
⟩,

(52)
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where

e±β (x, λ) = χ±Eβχ̂
±(x, λ), e±β (x, λ) = P0J(χ

±Eβχ̂
±(x, λ)),

e′,±β (x, λ) = χ′,±Eβχ̂
′,±(x, λ), e′,±β (x, λ) = P0J(χ

′,±Eβχ̂
′,±(x, λ)),

(53)

are the natural generalization of the `squared solutions' introduced �rst
for the sl(2)-case. By P0J we have denoted the projector P0J = ad−1

J ad J

on the block-o�-diagonal part of the corresponding matrix-valued func-
tion.

The right hand sides of eq. (53) can be written down with the skew�
scalar product:

[[
X,Y

]]
=

∫ ∞

−∞
dx⟨X(x), [J, Y (x)]⟩, (54)

where ⟨X,Y ⟩ is the Killing form; in what follows we assume that the
Cartan-Weyl generators satisfy ⟨Eα, E−β⟩ = δα,β and ⟨Hj ,Hk⟩ = δjk.
The product is skew-symmetric

[[
X,Y

]]
= −

[[
Y,X

]]
and is non-degenerate
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on the space of allowed potentials M. Thus we �nd

ρ+β = −i
[[
Q(x),e′,+β

]]
, ρ−β = −i

[[
Q(x), e′,−−β

]]
,

τ+β = −i
[[
Q(x), e+−β

]]
, τ−β = −i

[[
Q(x), e−β

]]
,

ρ⃗+ =
b⃗+

m+
1

, ρ⃗− =
B⃗−

m−
1

, τ⃗+ =
b⃗−

m+
1

, τ⃗− =
B⃗+

m−
1

.

(55)

Thus the mappings F : Q(x, t) → Ti can be viewed as generalized
Fourier transform in which e±β (x, λ) and e′,±β (x, λ) can be viewed as
generalizations of the standard exponentials.

We apply ideas similar to the ones above and get:

δρ+β = −i
[[
ad−1

J δQ(x), e′,+β
]]
, δρ−β = i

[[
ad−1

J δQ(x), e′,−−β

]]
,

δτ+β = i
[[
ad−1

J δQ(x),e+−β

]]
, δτ−β = −i

[[
ad−1

J δQ(x),e−β
]]
,

(56)

where β ∈ ∆+
1 .

These relations are basic in the analysis of the related NLEE and
their Hamiltonian structures. Assume that

δQ(x, t) = Qtδt+ O((δt)2). (57)
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Keeping only the �rst order terms with respect to δt we �nd:

dρ+β
dt

= −i
[[
ad−1

J Qt(x), e
′,+
β

]]
,

dρ−β
dt

= i
[[
ad−1

J Qt(x), e
′,−
−β

]]
,

dτ+β
dt

= i
[[
ad−1

J Qt(x),e
+
−β

]]
,

dτ−β
dt

= −i
[[
ad−1

J Qt(x), e
−
β

]]
,

(58)

Completeness of the `squared solutions'

Let us introduce the sets of `squared solutions'

{Ψ} = {Ψ}c ∪ {Ψ}d, {Φ} = {Φ}c ∪ {Φ}d, (59)

{Ψ}c ≡
{
e+−α(x, λ), e−α (x, λ), λ ∈ R, α ∈ ∆+

1

}
,

{Ψ}d ≡
{
e±∓α;j(x), ė±∓α;j(x), α ∈ ∆+

1 ,
}
,

(60)

{Φ}c ≡
{
e+α (x, λ), e−−α(x, λ), λ ∈ R, α ∈ ∆+

1

}
,

{Φ}d ≡
{
e±±α;j(x), ė±±α;j(x), α ∈ ∆+

1 ,
}
,

(61)
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where j = 1, . . . , N and the subscripts `c' and `d' refer to the contin-
uous and discrete spectrum of L, the latter consisting of 2N discrete
eigenvalues λ±j ∈ C±.

Theorem 1 (see V.S.G. (1998)). The sets {Ψ} and {Φ} form complete
sets of functions in MJ . The completeness relation has the form:

δ(x− y)Π0J =
1

π

∫ ∞

−∞
dλ(G+

1 (x, y, λ)−G−
1 (x, y, λ))

− 2i
N∑
j=1

(G+
1,j(x, y) +G−

1,j(x, y)),

(62)

Π0J =
∑

α∈∆+
1

(Eα ⊗ E−α − E−α ⊗ Eα),

G±
1 (x, y, λ) =

∑
α∈∆+

1

e±±α(x, λ)⊗ e+∓α(y, λ),
(63)

G±
1,j(x, y) =

∑
α∈∆+

1

(ė±±α;j(x)⊗ e±∓α;j(y) + e±±α;j(x)⊗ ė±∓α;j(y). (64)
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Idea of the proof. Apply the contour integration method to the function

G±(x, y, λ) = G±
1 (x, y, λ)θ(y − x)−G±

2 (x, y, λ)θ(x− y),

G±
1 (x, y, λ) =

∑
α∈∆+

1

e±±α(x, λ)⊗ e±∓α(y, λ),

G±
2 (x, y, λ) =

∑
α∈∆0∪∆−

1

e−±α(x, λ)⊗ e−∓α(y, λ) +
r∑

j=1

h±
j (x, λ)⊗ h±

j (y, λ),

h±
j (x, λ) = χ±(x, λ)Hjχ̂

±(x, λ),

(65)

and calculate the integral

JG(x, y) =
1

2πi

∮
γ+

dλG+(x, y, λ)− 1

2πi

∮
γ−

dλG−(x, y, λ), (66)

in two ways: i) via the Cauchy residue theorem and ii) integrating along
the contours.
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×λn

×λ∗
n

Ôèãóðà 1: The contours γ± = R ∪ γ±∞.
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Remark 1. There is a dual completeness relation for the `squared solu-
tions' obtained by replacing all e±α (x, λ) with e

′,±
α (x, λ).

Expansions of Q(x) and ad −1
J δQ(x).

Q(x) = − i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
τ+α (λ)e+α (x, λ)− τ−α (λ)e−−α(x, λ)

)

− 2
N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

τ+α e+α (x, λ) + Res
λ=λ−

j

τ−α e−−α(x, λ)

)
,

(67)

Q(x) =
i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
ρ+α (λ)e

′,+
−α(x, λ)− ρ−α (λ)e

′,−
α (x, λ)

)

+ 2
N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

ρ+αe
′,+
α (x, λ) + Res

λ=λ−
j

ρ−αe
′,−
α (x, λ)

)
,

(68)
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ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
δτ+α (λ)e+α (x, λ) + δτ−α (λ)e−−α(x, λ)

)

+ 2
N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

δτ+α e+α (x, λ)− Res
λ=λ−

j

δτ−α e−−α(x, λ)

)
,

(69)

ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
δρ+α (λ)e

′,+
−α(x, λ) + δρ−α (λ)e

′,−
α (x, λ)

)

− 2

N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

δρ+αe
′,+
−α(x, λ)− Res

λ=λ−
j

δρ−αe
′,−
α (x, λ)

)
.

(70)

These expansions combined with the proposition above give another
way to establish the one-to-one correspondence between Q(x) and each
of the minimal sets of scattering data T1 and T2.
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ad−1
J

dQ

dt
=

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
dτ+α
dt

e+α (x, λ) +
dτ−α
dt

e−−α(x, λ)

)

+ 2

N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

dτ+α
dt

e+α (x, λ)− Res
λ=λ−

j

dτ−α
dt

e−−α(x, λ)

)
,

(71)

ad−1
J

dQ

dt
=

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
dρ+α
dt

e′,+−α(x, λ) +
dρ−α
dt

e′,−α (x, λ)

)

− 2
N∑
j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

dρ+α
dt

e′,+−α(x, λ)− Res
λ=λ−

j

dρ−α
dt

e′,−α (x, λ)

)
.

(72)
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The generating operators

Introduce the generating operators Λ± through:

(Λ+ − λ)e+−α(x, λ) = 0, (Λ+ − λ)e−α (x, λ) = 0,

(Λ− − λ)e+α (x, λ) = 0, (Λ− − λ)e−−α(x, λ) = 0.
(73)

Their derivation starts by introducing the splitting:

e±α (x, λ) = ed,±α (x, λ) + e±α (x, λ), ed,±α (x, λ) = (11− P0J)e
±
α (x, λ),

(74)
into the equation

i
deα
dx

+ [Q(x)− λJ, eα(x, λ)] = 0. (75)

which is obviously satis�ed by the `squared solutions'. Then eq. (75)
splits into:

i
ded,±α

dx
+ [Q(x), e±α (x, λ)] = 0, (76)
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i
de±α
dx

+ [Q(x), ed,±α (x, λ)] = λ[J,e±α (x, λ)], (77)

Eq. (76) can be integrated formally with the result

ed,±α (x, λ) = Cd,±
α;ϵ (λ) + i

∫ x

ϵ∞
dy [Q(y), e±α (y, λ)], (78)

Cd,±
α;ϵ (λ) = lim

y→ϵ∞
ed,±α (y, λ), ϵ = ±1. (79)

Next insert (78) into (77) and act on both sides by ad−1
J . This gives us:

(Λ± − λ)e±α (x, λ) = i[Cd,±
α;ϵ (λ), ad

−1
J Q(x)], (80)

where the generating operators Λ± are given by:

Λ±X(x) ≡ ad−1
J

(
i
dX

dx
+ i

[
Q(x),

∫ x

±∞
dy [Q(y), X(y)]

])
. (81)

(Λ+ − λ)e+−α(x, λ) = 0, (Λ+ − λ)e−α (x, λ) = 0, (82)
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(Λ− − λ)e+α (x, λ) = 0, (Λ− − λ)e−−α(x, λ) = 0, (83)

Thus the sets {Ψ} and {Φ} are the complete sets of eigen- and adjoint
functions of Λ+ and Λ−.

Fundamental properties of the MNLS equa-

tions

The principal class of NLEE

By principle class of NLEE we mean the ones whose dispersion laws take
the form:

F (λ) = f(λ)J, (84)

where f(λ) may be rational functions of λ whose poles lie outside the
spectrum of L. The corresponding NLEE is

iad−1
J Qt + f(Λ±)Q(x, t) = 0. (85)
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Theorem 2. The NLEE (85) are equivalent to: i) the equations (11)
and ii) to the following evolution equations for the generalized Gauss
factors of T (λ):

i
dS+

J

dt
+ [F (λ), S+

J ] = 0, i
dT−

J

dt
+ [F (λ), T−

J ] = 0, (86)

and

i
dS−

J

dt
+ [F (λ), S−

J ] = 0, i
dT+

J

dt
+ [F (λ), T+

J ] = 0. (87)

The integrals of motion Hamiltonian properties of the

MNLS eqs.

The block-diagonal Gauss factors D±
J (λ) are generating functionals of

the integrals of motion. The principal series of integrals is generated by
m±

1 (λ):

± lnm±
1 =

∞∑
k=1

Ikλ
−k. (88)
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Let us outline a way to calculate their densities as functionals of Q(x, t).
Use a third type of Wronskian identities involving χ̇±(x, λ). They have
the form:(

χ̂±χ̇±(x, λ) + iJx
)∣∣∞

x=−∞ = −i
∫ ∞

−∞
dx (χ̂Jχ(x, λ)− J) , (89)

which gives

± d

dλ
lnm±

1 (λ) = −i
∫ ∞

−∞
dx (⟨χ(x, λ)Jχ̂J⟩ − 1). (90)

Note that in the integrand of the above equation we have in fact ⟨h±1 (x, λ)J⟩.
Splitting h±1 (x, λ) = hd,±1 (x, λ)+h±

1 (x, λ) into `block-diagonal' and `block-
o�-diagonal' parts we get

(Λ+ − λ)h±
1 (x, λ) = i

[
lim

y→±∞
hd,±1 (x, λ), ad−1

J Q(x)

]
= i[J, ad−1

J Q(x)] ≡ Q(x),

(91)
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i.e.

(Λ± − λ)h±
1 (x, λ) = Q(x),

hd,±1 (x, λ) = J +

∫ x

±∞
dy [Q(y),h±

1 (x, λ)].
(92)

Using eq. (92) and inverting formally the operator (Λ± − λ) we obtain
the relations:

± d

dλ
lnm±

1 (λ) = −i
∫ ∞

−∞
dx

(⟨
J +

∫ x

±∞
dy [Q(y),h±

1 (x, λ)], J

⟩
− 1

)
= −i

∫ ∞

−∞
dx

∫ x

±∞
dy
⟨
[J,Q(y)],h±

1 (x, λ)
⟩

= −i
∫ ∞

−∞
dx

∫ x

±∞
dy
⟨
[J,Q(y)], (Λ± − λ)−1Q(x)

⟩
.

(93)
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This procedure allows us to express the integrals of motion as functionals
of Q(x) in compact form:

Is =
1

s

∫ ∞

−∞
dx

∫ x

±∞
dy
⟨
[J,Q(y)],Λs

±Q(x)
⟩
. (94)

Note: the operators Λ+ and Λ− produce the same integrals of motion.
Using the explicit form of Λ± we �nd that:

Λ±Q = iad−1
J

dQ

dx
= i

dQ+

dx
− i

dQ−

dx
,

Λ2
±Q = −d

2Q

dx2
+
[
Q+ −Q−, [Q+, Q−]

]
,

Λ3
±Q = −id

3Q+

dx3
+ i

d3Q−

dx3
+ 3i

[
Q+, [Q+

x , Q
−]
]
+ 3i

[
Q−, [Q+, Q−

x ]
]
,

(95)

Q+(x, t) = (q⃗(x, t) · E⃗+
1 ), Q−(x, t) = (p⃗(x, t) · E⃗−

1 ).
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Thus for the �rst three integrals of motion we get:

I1 = −i
∫ ∞

−∞
dx ⟨Q+(x), Q−(x)⟩,

I2 =
1

2

∫ ∞

−∞
dx
(
⟨Q+

x (x), Q
−(x)⟩ − ⟨Q+(x), Q−

x (x)⟩
)
, (96)

I3 = i

∫ ∞

−∞
dx

(
−⟨Q+

x (x), Q
−
x (x)⟩+

1

2
⟨[Q+(x), Q−(x)], [Q+(x), Q−(x)]⟩

)
.

iI1 � is the density of the particles, I2 is the momentum and −iI3 is the
Hamiltonian of the MNLS equations. Indeed, taking H(0) = −iI3 with
the Poissson brackets

{qk(y, t), pj(x, t)} = iδkjδ(x− y), (97)

coincide with the MNLS equations (). The above Poisson brackets are
dual to the canonical symplectic form:

Ω0 = i

∫ ∞

−∞
dx tr (δp⃗(x) ∧ δq⃗(x))
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=
1

i

∫ ∞

−∞
dx tr

(
ad−1

J δQ(x) ∧ [J, ad−1
J δQ(x)

)
(98)

=
1

i

[[
ad−1

J δQ(x)∧
′
ad−1

J δQ(x)
]]
, (99)

The last expression for Ω0 is preferable to us because it makes obvious
the interpretation of δQ(x, t) as local coordinate on the co-adjoint orbit
passing through J . It can be evaluated in terms of the scattering data
variations.

Ω0 =
1

πi

∫ ∞

−∞
dλ
(
Ω+

0 (λ)− Ω−
0 (λ)

)
− 2

N∑
j=1

(
Res
λ=λ+

j

Ω+
0 (λ) + Res

λ=λ−
j

Ω−
0 (λ)

)
,

Ω±
0 (λ) =

∑
α,γ∈∆+

1

δτ±(λ)D±
α,γ ∧ δρ±γ , D±

α,γ =
⟨
D̂±E∓γD

±(λ)E±α

⟩
,

Hierarchy of Hamiltonian formulations of MNLS:

Ωk =
1

i

[[
ad−1

J δQ∧
′
Λkad−1

J δQ
]]
, Λ =

1

2
(Λ+ + Λ−), (100)
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Hk = ik+3Ik+3. (101)

We can also calculate Ωk in terms of the scattering data variations. Doing
this we will need also eqs. (82) and (83). The answer is

Ωk =
1

2πi

∫ ∞

−∞
dλλk

(
Ω+

0 (λ)− Ω−
0 (λ)

)
− i

N∑
j=1

(
Ω+

k,j +Ω−
k;j

)
,(102)

Ω±
k,j = Res

λ=λ±
j

λkΩ±
0 (λ). (103)

This allows one to prove that if we are able to cast Ω0 in canonical
form then all Ωk will also be cast in canonical form and will be pair-wise
equivalent.
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Modeling Soliton Interactions of the perturbed

vector nonlinear Schr�odinger equation

The idea of the adiabatic approximation to the soliton interactions -
Karpman (1980)
Modeling of the N -soliton trains of the perturbed NLS eq.:

iut +
1

2
uxx + |u|2u(x, t) = iR[u]. (104)

N -soliton train

u(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), uk(x, t) =
2νke

iϕk

cosh(zk)
,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0.

(105)
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Adiabatic approximation holds true if:

|νk − ν0| ≪ ν0, |µk − µ0| ≪ µ0, |νk − ν0||ξk+1,0 − ξk,0| ≫ 1,(106)

ν0 =
1

N

N∑
k=1

νk, µ0 =
1

N

N∑
k=1

µk (107)

Two di�erent scales:

|νk − ν0| ≃ ε
1/2
0 , |µk − µ0| ≃ ε

1/2
0 , |ξk+1,0 − ξk,0| ≃ ε−1

0 .

Consider perturbation by external potentials:

iR[u] = (V2x
2 + V1x+ V0 +A cos(Ωx+Ω0))u(x, t), V2 > 0. (108)

Perturbed CTC model (VSG et al (1996)):

dλk
dt

= −4ν0
(
eQk+1−Qk − eQk−Qk−1

)
+Mk + iNk,

dQk

dt
= −4ν0λk + 2i(µ0 + iν0)Ξk − iXk,

λk = µk + iνk, Xk = 2µkΞk +Dk

(109)
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Qk = −2ν0ξk + k ln 4ν20 − i(δk + δ0 + kπ − 2µ0ξk),

ν0 =
1

N

N∑
s=1

νs, µ0 =
1

N

N∑
s=1

µs, δ0 =
1

N

N∑
s=1

δs.
(110)

Nk = 0, Mk = −V2ξk − V1
2

+
πAΩ2

8νk sinhZk
sin(Ωξk +Ω0), Ξk = 0,

Dk = V2

(
π2

48ν2k
− ξ2k

)
− V1ξk − V0 −

π2AΩ2

16ν2k

coshZk

sinh2 Zk

cos(Ωξk +Ω0),

Zk = Ωπ/(4νk).
(111)

Perturbed vector NLS:

iu⃗t +
1

2
u⃗xx + (u⃗†, u⃗)u⃗(x, t) = iR[u⃗]. (112)
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Vector N -soliton train:

u⃗(x, t = 0) =
N∑

k=1

u⃗k(x, t = 0), u⃗k(x, t) =
2νke

iϕk

cosh(zk)
n⃗k,

zk = 2νk(x− ξk(t)), ξk(t) = 2µkt+ ξk,0,

ϕk =
µk

νk
zk + δk(t), δk(t) = 2(µ2

k + ν2k)t+ δk,0.

(113)

(n⃗†k, n⃗k) = 1,

n∑
s=1

arg n⃗k;s = 0.
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Variational approach and PCTC for PVNLS

and generalized CTC

L[u⃗] =

∫ ∞

−∞
dt

i

2

[
(u⃗†, u⃗t)− (u⃗†t , u⃗)

]
−H,

H[u⃗] =

∫ ∞

−∞
dx

[
−1

2
(u⃗†x, u⃗x) +

1

2
(u⃗†, u⃗)2 − (u⃗†, u⃗)V (x)

]
.

(114)

Then the Lagrange equations of motion:

d

dt

δL

δu⃗†t
− δL

δu⃗†
= 0, (115)

coincide with the vector NLS with external potential V (x).

Insert u⃗(x, t) =
∑N

k=1 u⃗k(x, t) and integrate over x neglecting all
terms of order ϵ and higher. Assume that at t = 0

ξ1 < ξ2 < · · · < ξN
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∫ ∞

−∞
dx (u⃗†k,x, u⃗p,x),

∫ ∞

−∞
dx (u⃗†k, u⃗p),

∫ ∞

−∞
dx (u⃗†k, u⃗p)V (x),

(116)

with |p − k| ≥ 2 can be neglected. The same holds true also for the
integrals ∫ ∞

−∞
dx (u⃗†k, u⃗p)(u⃗

†
s, u⃗l),

where at least three of the indices k, p, s, l have di�erent values.
Thus after long calculations we obtain:

L =
N∑

k=1

Lk +
N∑

k=1

∑
n=k±1

L̃k,n, Lk,n = 16ν30e
−∆k,n(Rk,n +R∗

k,n),

Rk,n = ei(δ̃n−δ̃k)(n⃗†kn⃗n), δ̃k = δk − 2µ0ξk,

∆k,n = 2sk,nν0(ξk − ξn) ≫ 1, sk,k+1 = −1, sk,k−1 = 1.
(117)

0-58



Lk = −2iνk

(
(n⃗†

k,t, n⃗k)− (n⃗†k, n⃗k,t)
)
+ 8µkνk

dξk
dt

− 4νk
dδk
dt

− 8µ2
kνk +

8ν3k
3

+ 2πνkV0 +
π3

8νk
V2 +

πA cos(Ω0)

2 cosh(Zk)

(118)

The equations of motion are given by:

d

dt

δL

δpk,t
− δL

δpk
= 0, (119)

where pk stands for one of the soliton parameters: δk, ξk, µk, νk and n⃗†k.
The corresponding system is a generalization of CTC:

dλk
dt

= −4ν0

(
eQk+1−Qk(n⃗†

k+1, n⃗k)− eQk−Qk−1(n⃗†k, n⃗k−1)
)
+Mk + iNk,

dQk

dt
= −4ν0λk + 2i(µ0 + iν0)Ξk − iXk,

dn⃗k
dt

= O(ϵ),

(120)
Additional equations describing the evolution of the polarization vectors.
But we can replace (n⃗†k+1, n⃗k) by their initial values

(n⃗†k+1, n⃗k)
∣∣∣
t=0

= m2
0ke

2iϕ0k , k = 1, . . . , N − 1 (121)
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E�ects of the polarization vectors on the soli-

ton interaction

The CTC is completely integrable model; it allows Lax representation
Lt = [A.L], where:

L =
N∑
s=1

(bsEss + as(Es,s+1 + Es+1,s)) , A =
N∑
s=1

(as(Es,s+1 − Es+1,s)) ,

as = exp((Qs+1 −Qs)/2), bs = µs,t + iνs,t, (Eks)pj = δkpδsj
(122)

The eigenvalues of L ζs = κs + iηs are integrals of motion and κs deter-
mine the asymptotic velocities of CTC.

The GCTC is also a completely integrable model; its allows Lax rep-
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resentation L̃t = [Ã.L̃], where:

L̃ =

N∑
s=1

(
b̃sEss + ãs(Es,s+1 + Es+1,s)

)
, A =

N∑
s=1

(ãs(Es,s+1 − Es+1,s)) ,

ãs = m2
0ke

2iϕ0kas, bs = µs,t + iνs,t
(123)

The eigenvalues of L̃ ζ̃s = κ̃+iη̃s are integrals of motion and κ̃s determine
the asymptotic velocities for the soliton train described by GCTC.

Thus, starting from the set of initial soliton parameters we can calcu-
late L|t=0 (resp. L̃|t=0), evaluate the real parts of their eigenvalues and
thus determine the asymptotic regime of the soliton train.

Regime (i) κk ̸= κj (resp. κ̃k ̸= κ̃j) for k ̸= j, i.e. the asymptotic
velocities are all di�erent. Then we have asymptotically separating,
free solitons, see also [?, ?, ?]

Regime (ii) κ1 = κ2 = · · · = κN = 0 (resp. κ̃1 = κ̃2 = · · · = κ̃N = 0),
i.e. all N solitons move with the same mean asymptotic velocity,
and form a �bound state".
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Regime (iii) a variety of intermediate situations when one group (or
several groups) of particles move with the same mean asymptotic
velocity; then they would form one (or several) bound state(s) and
the rest of the particles will have free asymptotic motion.

Remark 2. The sets of eigenvalues of L and L̃ are generically di�erent.
Thus varying only the polarization vectors one can change the asymptotic
regime of the soliton train.

Several particular cases.

Case 1 n⃗1 = · · · = n⃗N . Since the vector n⃗1 is normalized, then all
coe�cients mok = 1 and ϕ0k = 0. Then the interactions of the
vector and scalar solitons are identical.

Case 2 (n⃗†s+1, n⃗s) = 0. Then the GCTC splits into two unrelated GCTC:
one for the solitons {1, 2, . . . , s} and another for {s+1, s+2, . . . .N}.
If the two sets of soliton parameters are such that both groups of
solitons are in bound state regimes, then these two bound states

0-62



Case 3 ⟨n†k+1|n⃗k⟩ = m2
0e

2iφ0 � e�ective change of distance and phases
of solitons. Rewrite

ãs = exp((Q̃s+1 − Q̃s)/2), Q̃s+1 − Q̃s = Qs+1 −Qs + lnm0 + iφ0,

i.e. the distance between any two neighboring vector solitons has
changed by lnm0/(2ν0); similarly the phases

Initial parameters of the solitons:

νk(0) = 0.5, ϕk(0) = kπ, ξk+1(0)− ξk(0) = r0, µk = 0.
(124)

E�ects of external potentials
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Ôèãóðà 2: The initial soliton parameters as like in (125) with r0 = 9.
Left panel: scalar soliton train; Right panel: vector soliton train with
r0 = 9 and m0s = 0.7.
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Ôèãóðà 3: Left panel: vector soliton train with m0s = 0.8; Right panel:
vector soliton train with m01 = m03 = m04 = 0.8 and m02 = 0.031.
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Ôèãóðà 4: Oscillations of the 5-soliton train (see (125) in a moderately
weak periodic potential, A = 0.0005, Ω = 2π/9, r0 = 9. Left panel: the
trajectories as described by the CTC. Right panel: the numerical solution
of the NLS eq.
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Ôèãóðà 5: The e�ect of the periodic potential on 7-soliton trains (125)
with r0 = 7 and subcritical intensities. UL: V2 = −0.00075; UR: V2 =
−0.0012; Below: critical intensity: V2 = −0.0013.
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Conclusions

• The ISM for solving soliton equations can be viewed as Generalized
Fourier transform

• The recursion operators generate all fundamental properties of the
soliton equations

• The GCTC models the soliton interaction in adiabatic approxima-
tion for the vector NLS
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