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Integrable MINLS and Lax representations

A .III-type MNLS or the vector NLS (the Manakov model) — Manakov,
1974::

Ha = / dz (g " q) — (CTT,QQ) ,

— 00

iq, + G + 277, 0)7 (x,t) =0,
BD.I-type MNLS:

o . . . 1 .
Hpp1= / dx ((% T»Qa:) — (C] T7@2 =+ 5\(% SOCD‘Q>

— 00
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A.IIll-type MNLS

Dp(, A) = 5% + gyl ) ~ AT, \) = 0

awn= (g 5") 0-(33)

M = @-% T (Vola,t) — Vos + 22Q(2,£) — 2227) (. £, \)

= Y(x,t,\)C(N),
Vo(z,t) = [ad 7'Q, Q(z,1)] + 2iad ;' Q,,
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BD.I-type MNLS

Lip(z,t,A) = 109 + (Q(x,t) — AJ)p(x, £, A) = 0.
M(z,t, ) = i0pp + (Volz,t) + A\Vi(x,t) — N2 D)(z, t,\) =0,

Vi(x,t) = Q(x, 1), Vo(x,t) = iad }1% % [ d}lQ,Q(x,t)] .

where J = diag(1,0,...0,—1) and

0 g- 0 2r41 0 0 1
Q — ﬁ 0 SOCT , SO = Z (—1)k+1Ek72T+2_k — 0 —s9 0 ;
0plsy O k=1 1 0 O

(2)

Here (Ekn)ij = 0ix0n; and the 2r — 1-vectors ¢ and p' = ¢* take the form

q_): <Q17 ceyqr—1,490,49—1, .- - 7Q—T+1)T7
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BEC with hyperfine structure

PNaesF=1 ®Rb&e F=2
see Wadati et al (2004), (2006), (2007); Ohmi & Machida (1998);
Kuwamoto et al (2004); Gerdjikov et al (2007), (2008)

The assembly of atoms in the hyperfine state of spin F' is described
by a normalized spinor wave vector with 2F" 4 1 components

d(x,t) = (Pp(x,t),..., Po(x,t),...,P_p(x,t)’
Ginzburg-Pitaevsky equation in the one-dimensional approximation:

0P  dEqp|P]

— : 3

"ot T oo (3
where for F' = 1 the energy functional is given by:
h? co + ¢ C

Egp = /d:r; 19,02 + 2 e (@f, )2 - 2 2010 — @3]2} .

2m 2 2
the effective 1D couplings ¢p 2 are represented by

Co = 60/20,3_, Co = 02/2013_, (4)
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where a is the size of the transverse ground state. In this expression,

co = mh*(ag + 2az)/3m, cy = wh*(as — ag)/3m, (5)

where as — s-wave scattering lengths; m is the mass of the atom.
Special (integrable) choice for the coupling constants ¢y = ¢2 = —c <
0, equivalently scattering lengths 2ag = —ao > 0. In the dimensionless

form: ® — {®1, o, ®_1}! the corresponding GPE take the form:

10, @1 + 02®1 + 2(|®1|* + 2|Pp|*) P + 20* ;P; = 0,
i0,®g + 2@ + 2(|®_1]° + |Po|* + |®1]%) Do + 2051 _; =0, (6)
10, ®_1 +070_1 +2(|®_1|* + 2|®g|*)P_; +207®2 = 0.

F' = 2 hyperfine state is described by a 5-component spinor wave
vector

O(x,t) = (Do, t), P1(x,t), Po(z,t), P_1(x,t), D_o(x, 1)), (7)

>° h? c c c
Eap[®] = / da <%]a$<1>\2 T %On? n 5%‘2 n %ﬂ@ﬁ) (8

— 00
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e=+1, n=(dT, Zcbcb

a=—2
O = ((I;, 805) = 2(132(13_2 — 2(1)1(1)_1 + (I)%

Choosing ¢ =0, ¢4 = 1 and ¢y = —2 we obtain
i0:® 1o + 0pp®io = —2¢(8, 2*)Dyn + €(202D_5 — 201 P_; + $F) D%,
100 P11 + 0., P = —2€(<I§, 5*)@i1 — (202D 5 — 20D | + @2)@}17

i10p Do + Oy P = —26(P, D*) Dy + €(20,P_o — 201D _; + B2) D7

which is integrable by the inverse scattering method.
Lax pairs for systems on symmetric spaces — Fordy, Kulish (1983)

For our system we have BD.I-type symmetric spaces:
~ SO(n + 2)/SO(2) x SO(n)

with n = 3 and n = 5 respectively.
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Symmetric and homogeneous spaces

Symmetric space: M is globally symmetric if each its point p is isolated
invariant point under an involutive isometry:

KM)= KMK =M, K*=1.

Cartan has classified all such involutions.
M = & /H where & is simple and H is semisimple. Normally

H={Kec®, suchthat KJK '=J Je&¥H}.

Local coordinates:

Q(z) = [/, Q' (z)].
Typically H is simple:

S (]é _oﬂ) ) = (Q_o(x) Q+O($))’
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But for BD.I-type symmetric spaces H is semi-simple: H ~ SO(2) ®
SO(n)

100 0 ¢g" o0
J = 00 0 ) Q: ﬁo SOJ )
00 —1 0plsy O

Effectively it is enough to properly specity & and J in order to de-
termine M. The corresponding Lie algebra g acquires Zs-grading:

g=0"+g",

gV ={X:Xeg XKX)=X}, g¥={y:Yeg XY)=-Y,
The grading property:

[9(0)79(0)] e g®, [9(0)79(1)] e g, [g(l)’g(l)] e g®
The set of positive roots A also splits into two subsets:
AT =AJUAT,
Af={a: afJ)=0} AT ={a: aJ)=a>0}
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Inverse scattering method and reconstruction
of potential from minimal scattering data

Solving the direct and the inverse scattering problem (ISP) for L uses
the Jost solutions

lim ¢z, t,\)e?? =1, lim 9(x,t,\)e? =1 (9)

T——0O0 o de o)

and the scattering matrix T'(\, t) = " t¢(x,t, \). We use the following
block-matrix structure of T'(\,t)

mi“ b T cy
T()\, t) = bt Too —Soé_ ) (10)

+ B+T —
c; BT sg my
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Theorem. If Q(x,t) evolves according to (6) then the scattering
matrix and its elements satisfy the following linear evolution equations

db* , dB* .
i— £ AT (t,A) =0, i + A2BE(t,\) = 0,
AT o 1Th
dt dt

Consequence: MNLS have infinite number of integrals of motion. In-
deed mi (\) are generating functionals of the integrals of motion.
Solving MNLS by the Inverse scattering method:

q_)(llf,t — O) — LO L‘t>0 — (T(ZE,t)
Il TIII (12)
T(0,)) — T(t,\)

Important: All steps reduce to linear integral equations.
The ISP is reduced to a Riemann-Hilbert problem (RHP) for the
fundamental analytic solution (FAS) x*(z,t,\). Their construction is
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based on the generalized Gauss decomposition of T'(\,t)
T(A) =Ty (A)DF(NSF(A) =T (A)D; (XS5 (M), (13)

Here Sjc, T Ji upper- and lower-block-triangular matrices, while D?()\)
are block-diagonal matrices with the same block structure as T'(),t)

above. The explicit expressions of the Gauss factors in terms of the ma-
trix elements of T'(\,t) is

17T ef 1 0 0
ST¢,N)=(0 1 s 77|, S;&N=-7" 1 0],
0 0 1 c; —7 lsy1
p_b B L0 B
T — + T — — /0 T + p _ —
my my my my
1 —p—T o~ 1 0 0
7N =(0 1 —sop~ |, T;t,N=|7" 1 0],
0 0 1 &t gt Ty 1
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m{ 0 0 1/m;y 0 0

Df=|( 0 mj 0 : D; = 0 m, 0 |,
0 0 1/mf 0 0 my
and L Lo
bTb~ sob~bT's
m; = Ty + —, m, = To + ° °
my my

Then the FAS can be defined as:

XT(z,t,\) = d(x,t, \)ST (L, \) = o(z, t, \)TF (£, \) DE(N). (14)

The FAS for real X\ are linearly related

ot

X (2,8, N) = x (2, £, \)Gs(\ 1), Go.g(A\t) =87 (N 1)ST (A t)
(

1
One can rewrite eq. (15) in an equivalent form for the FAS X (z,t,\) =
x T (x,t, \)e?M® which satisfy also the relation

lim £5(z,t,\) = 1. (16)
A— 00
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Then these FAS satisfy

V(@ 6, N) =€ (2, t, NGz, A t),  Gulz, A t) =e Gy (N 1)e™?.
(17)
Obviously the sewing function G;(x, A, t) is uniquely determined by the
Gauss factors S7(\,t).
Given the solution ¢é*(x,t, \) one recovers Q(x,t) via the formula

Q(z,t) = lim A (J _ eI (a8, A)) . (18)

A— 00

We impose also the standard reduction:

Q(z,t) = eQ'(x,1) & PE = €qp.

As a consequence we have

p-(\t) =ep T (N, 1), 7 (\t) = eT (L.
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Zakharov-Shabat dressing method and soliton
solutions

Starting from a regular solution x (z,t, ) of Lo(\) with potential Q) (z,1)
construct new singular solutions x(x, t, \) of L with a potential Q) (z,1)

with two additional singularities located at prescribed positions )xli; the
reduction p = ¢* ensures that \] = (A\7)*. It is related to the regular
one by a dressing factor u(z,t, \)

XI—L(:I:,t,)\):u(x,)\)xg(x,t,)\)uil()\). u_(A) = lim wu(z,\) (19)

r—r— 00
Note that u_ () is a block-diagonal matrix. u(x, A\) must satisfy
10u + Q) (2)u — uQo)(x) — AlJ,u(x, )] =0, (20)

and the normalization condition limy_, . u(z, \) = 1.
The construction of u(x, \) is based on an appropriate anzats speci-
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fying explicitly the form of its A-dependence:

u(x,A\) =14 (c(\)—1)P(x,t)+ (ﬁ — 1) P(z,t), P =S5'PLs,,
(21)

where P(x,t) and P(x,t) are projectors which satisfy PP(x,t) = 0.

_ [z, 0)) (0] (., 8)

P(z,t) = - :
(ny(z,t)|n1(x,t))
- A=
na (@, 1)) = X0 (2,8, A7)[noa), e ==, (noalSofno1) = 0.
— M
(22)
Taking the limit A — oo in eq. (28) we get that
Q(l)(ajat) _ Q(O)('xat) — (>\1_ o )\i'_)[J,P(.T,t) _?('Tat)]
If Q) =0 and put A =+, xg (z,t,\) = e
ap ) (2,1) = =2iv (Pig(a, ) + (=1 Pr o (@,0) - (23)
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where k = 2r + 2 — k.
The one-soliton solution reads

_,L-Ve—i,u,(a:—’vt—éo) _ .
_ zZ—1Qp 1 k_ _ _—z+i¢g
Tk cosh 2z + A2 (o (1) ege )
V2 — 2
v = : u = —2u, z(x,t) = v(x —ut — &), (24)
v
1 |no2rl _ 70,k | 2 Dy lnosl?
50 — In ’ — ’ 0 — ’
2U \n0,1 \/’nO,l ’ ’n0,2T+1| 2‘”0,1”0,27“4—1‘
and dg = argmng, 1/ = —argngar+1/1, O = argng . The polarization
vectors satisfy the following relation
> 21" g png g+ (=1)"ng 0y = 0. (25)
k=1

Thus for r = 2 we identity &1 = ¢2, ¢ = qg/\@ and ®3 = ¢4 and we
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obtain the following solutions for the equation (6)

2iv/aigage T —vt—011) . .
b = — (cos ¢p+1 cosh z41 — isin ¢p41 sinh 241 ),

cosh 2z + A2
— 1
5i1:50:|:¢22 ¢47 ¢il=¢2+¢4 Zi1:Z:F—ln%,
v 2 2 a9
o —ip(x—vt—0dg)
b, = — IZZ:SS}TQZ A (cos ¢3 sinh z — i sin ¢3 cosh z) .

For r = 3 we identify ®5 = ¢2, ®1 = ¢q3, P9 = q4, ®_1 = ¢5 and
d_, = g, so that the one-soliton solution for equation (?7) reads

2ivy/agage (@ —vt—0x2)

Do — h L h
49 cosh 27 & Ag (cos 4o cosh z4o — i sin 49 sinh z4o) ,
2iv /g e T —vt—011) . .

b = — h — cosh :
1 cosh 27 + A2 (cos @41 sinh 241 — i sin ¢4 Z41)
— 1
5:&2:50:F¢22 ¢67 ¢:l:2:¢2+¢6 Z:I:2:Z:F_ln%7

v 2 2 a9
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3 — @5 ®3 + @5 1. as

01 = 0 = = In —

+1 0+ 2 P11 5 Z+1 Z]F2no¢3’
o0 —ip(x—vt—>dg)

by = — WS;SEL 2 A2 (cos ¢4 cosh z — i sin ¢4 sinh 2) .

Choosing appropriately the polarization vectors |n) we are able to repro-
duce the soliton solutions obtained by Wadati et al. both for F' =1 and
IF'=2 BEC.

Alternative methods and N-soliton solutions

In order to obtain /V-soliton solutions one has to apply dressing proce-
dure with a 2N-poles dressing factor of the form

3:>\—]1+Z()\ % A_A;). (26)
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The N-soliton solution itself can be generated via the following formula

N

Qns(x) = )], A() + Bi()). (27)

k=1

The dressing factor u(x, \) must satisfy the equation
10,u + QN su — A J,ul =0 (28)

and the normalization condition limy_ . u(x, A\) = 1. The construction
of u(x,\) € SO(n + 2) is based on an appropriate anzatz specifying the
form of its A-dependence [?, ?|

The residues of u admit the following decomposition

Ap(z) = Xp(@)Fy (z),  Bilz) = Yu(2)Gj (2).

where all matrices involved are supposed to be rectangular and of max-
imal rank s. By comparing the coefficients before the same powers of
A — i in (28) we convince ourselves that the factors Iy, and G}, can be
expressed by the fundamental analytic solutions xi (x, \) as follows

Fl (@) = FLbd @ A0 GF () = Gl (. A0)]
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The constant rectangular matrices Fy o and G o obey the algebraic re-
lations

FiloSoFeo =0, G} SoGro=0.

The other two types of factors X and Y} are solutions to the algebraic
system

X, FYSF Y,GES F
SOFk:XkOék+leOk leOk

£k /\l+ o )‘Z l Al )‘Z | (29)
XZFTSOGk; YZGTSOGk:
SoGr = ) l YiBr + ) l .
oGk l )\;r_)\]; + Y. Bk A — A

£k

The square s X s matrices ax(x) and Bx(x) introduced above depend on
xg and x, and their derivatives by \ as follows

ag(r) = _F()Y:k [XBL(% A;)]_lf?AXBL(% )‘—ki_)SOFO,k + Qo k,
Br(x) = —GoT,k[Xa (2, A))] " Oaxg (2, A1 )S0Go k + Bok-

Below for simplicity we will choose Fi and G to be 2r+1-component
vectors. Then one can show that ap = §; = 0 which simplifies the system

(30)
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(29). We also introduce the following more convenient parametrization
for i and Gy, namely (see eq. (32)):

e~ 2k tidr eZk TiPk
Fi(z,t) = Solng(z,t)) = | —v2s000k | Gi(z,t) = [nj(z,t)) = | V20 *
eZk 1Pk e~ %k 1Pk

(31)

where vy, are constant 2r — 1-component polarization vectors and

2 zl/j(x—I—Q,ujt)—l-foo, o :Mj37+(M? —V?)t+500a

<an(x,t)|So|nj(a:,t)> — O, or (ﬁO,jSOﬁO,j) = 1.

(32)

The polarization vectors automatically satisfy (n;(x,t)|So|n;(x,t)) = 0.
Thus for N =1 we get the system:

(AT — A7)Solnt)

(nl|n1)

Al = Ap)Ina)

(nl|n1)

1) = - o 33)

) |X1> —
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which is easily solved. As a result for the one-soliton solution we get:

L W20 = A e

dis = — Al

(e * solto1) + €*H|T51)) A1 = cosh(2z))+ (T, |Fo1).

(34)
For n = 3 we put vor = |vor|e“* get:

2Uvo1.1v01.2| (AT — AT - -
i = YA 20 i

X (COSh(Zl -+ COl) COS(O&13) — iSiHh(Zl — COl) Sin(&lg)) ,

V2lwora|(A = AD) —

(I)ls;O —

Aq
X (sinh z; cos(ag2) + @ cosh 21 sin(ag2)) ,
1 1
P13 = (0403 — ao1), Go1 = —1 ; Q13 = 5(0403 + ao1),

(35)

Note that the ‘center of mass’ of ®15.1 (resp. of ®14._1) is shifted with
respect to the one of @159 by (91 to the right (resp to the left); besides
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|P15.1| = |P1s:.—1], i.e. they have the same amplitudes.
For n =5 we put vor = |vor|e®* and get analogously:

Urvor1vors (AT = A7) . L.
Doy = — \/ |V01’1VOZ5‘( 1 1 >e_"¢1i“315
1

X (COSh(Zl -+ C01> COS(O&15) — isinh(zl + COl) Sin(oz15)) ,

2v01.9V01.4| (AT — AT . .
(I)ls;:tl = \/ | 012 024’( 1 1 )€—Z¢1:|22524
1

X (cosh(z1 F (p2) cos(aay) — isinh(z1 F (p1) sin(aay)),
V20o13|( AT — A7) g,

Pig0 = — A e (cosh z1 cos(aps) — 2 sinh 27 sin(ap3)) ,
1

1 1 Vo1:5 1
= — — — — 1 ! —

15 2(0405 o1); Co1 5 vora|’ 15 2(0405 + 1),
1 1 V014 1
— _ _ — ] ’ _ -

524 2(0404 02), Co2 5 0 ora| (V24 2(0404 + ag2),

(36)

Similarly the ‘center of mass‘ of ®i5.0 and Pi51 (resp. of P52 and
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®1._1) are shifted with respect to the one of @140 by (o1 and (p2 to the
right (resp to the left); besides |®15.2| = |P15.—2| and [P15.1| = | P15, —1].
For N = 2 we get:

Xg(af,t)fgl Yl(ilj,t)/ill 1 YQ(CE,t)/igl
Ag = AT A=A A A
Xl(af,t)flg Yl(ilf,t)/ilg 1 YQ(.Q?,t)KQQ
M =AD A=A A AT
Xl(m,t)lﬁlll XQ(x,t)K/ll X Yg(x,t)fékl
T
Xl(SE,t)KQl XQ(CC,t)KQQ 1 Yl(af,t)fo
M =X A=A A=A

n1(2,1)) =

n2(2,1)) =

(37)

Solny(z,t)) =

So|ng(z,t)) =

where

ki (z,t) = e T2 tilon=0s) 4 eman=2=i(0r=05) 4 9 (ﬁ(‘;k, ﬁo;;) ,
(38)

frj(z,t) = ek~ 2 Uk —d5) 4 pzi—zeti(dn—0;) _ 9 (ﬁg;csoﬁoﬂ 7
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In other words:

( 0 +f21 . fi K21 \
A=A Al —A A, — A
f12 ’ O ! 11612 ' 2522 ' Xl ‘n1>
Mo | Mo v rps vl IR O
e e cl R B I
1 M 2 — N . 2 T Y- g | *>
K21 K22 J1o 0 ) 2 0[72
AT A=A AL =Xy

We can rewrite M in block-matrix form:

o M Mo A T
M = (M21 M22> : Moo = M7, Mo = =My,

K K 40
My = J12 ( 0 1> Mo = Al—ile A;ilxj (40
Ag = A\ TLO RS G

The inverse of M is given by:

M-l — ( (My1 — M12MT1M21)_1 A —(My1 — M12MT1M21)_1M12MT1>
—(MF; — Moy M1 My2) ™ P Ma1 My (MF; — Mo M1 M)t ’
(41)
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One can check by direct calculation that:

o ¥ 0 1
My — MM Moy = Jiz Z ( > )

Ay — A —10
* $ f12 0 1
11— Mar My My = N )\;FZ 10} (42)
7 ( |f12|2 __ R12k21 /<311/€22)
N NPT NP v )
Finally we get:
f;ﬂé _ _ k22 K12
( 0 AL —As AT =Xy AT-AT \
1| =——f=2— o _k:; ko
Ml==| M-A AT =X AT AT (43)
Z K29 L K21 O _ f12 )
) S Y AT =S AT AT
_ K12 K11 f12 0
v vl v vl s /
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From egs. (39) and (43) we obtain:
1 ffz K22 K12 "
X)) = —( Sy - 2 g 4 _so\n2>),
Z \ | — )\, AT — ), Ay — A
1 - K21 K11
X0) = (— Sy gy — _So\n§>> ,
1 K99 K21 J12 )
Vi) = — _ _ Soln) ) .
’1> Z<)\;_)\2_| 1> )\IL—)\Q_‘2> )\EL_)\; 0’n2>
1 K192 K11 f12
Vo) = & (— )+ g So!n’;>) ,
Z\ N =)\ AT =] Ay — A

(44)

Inserting this result into eq. (27) we obtain the following expression
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for the 2-soliton solution of the MNLS:

1
QQS(LU,t) = [J, Al + Bl + AQ + BQ] = E[J, C(Qj,t) — SQCT(ZE,t)So],

K22 K12 K
C(z,t) = - Iny)(nd| - Ao ny)(nd| - A il)\; o) (nl]
K11 t fi2 f12 ot
+ - So — S |
o a n2) Ny N [n1)(n2|S0 Tt o|nz)(ny]
(45)
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Two Soliton interactions

- exp(l/gzl/yl) + 2Cq, for T — oo,
22 = °T exp(—1o21/v1) + 261, for 7 — —oo0,

e’ eXP 1+V2/V1)21 i(¢1 — ¢2)) +O(1),
Texp(—(1+ve/v1)z1 —i(¢1 — ¢2)) + O(1),

{ -
{e expp1+u2/u1)z1—z(¢1 $2)) + 0(1),
e (i

K12 =

exp(—(1 +v2/v1)z1 + (¢ — ¢2)) + O(1),
2

e’ exp (1 —rv2/v1)z1 + (1 — P2))
T exp(( 1 — o /v1)21 — (1 — P2))

0(1),
O(1),

_|_
+

0-30

for
for

for
for

for
for

T — 00,
T — —00,
T — 00,
T — —00,

T — 00,
T — —00,
(46)



After somewhat lengthy calculations we get:

lim gas(x,t) = _i\@me_i(gbl_o‘*) (e_zl_r+30’ﬁTT> iezwrﬂﬁgﬁ)
500 cosh(2(z1 + 7)) + (¥4, Po1)

= Cf(li)(zl +ri,¢1 —aq)

iV 2u e P (e 50 Ty ) + €217 7))

Y

hm (TQS(ZIZ‘,t) =

00 cosh(2(z1 —71)) + (ﬁgla Uo1)
= G (21— 1y, 1+ ag).
(47)
where N n n n
ry = In — Q4 = arg —
AT =23 A=A
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The Generalized Fourier Transforms for Non-
regular J

We show that the ISM can be viewed as generalized Fourier transform
(GFT). We determine explicitly the proper generalizations of the usual
exponents. We also introduce a skew—scalar product on M which provides
it with a symplectic structure.

The Wronskian relations

Along with the Lax operator we consider associated systems:

A

i Bt Ut N) =0, U A) = Q) ~ A (48)
f?—j +OU (2,6, (@, 8, N) + Ul t, (2, 6, 0) =0 (49)
z% — Nz, t, ) + Uz, t, \)ip(x, t, ) =0 (50)
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where d1) corresponds to a given variation 6Q(x,t) of the potential, while
by dot we denote the derivative with respect to the spectral parameter.
We start with the identity:

(XN = D =i T et Q@) (@), (L)

— OO

where x(z, A) can be any fundamental solution of L.
One can use the asymptotics of T (z, \) for z — Footo express the
1.h.sides of the Wronskian relations in terms of the scattering data. Then

(N - N B =i [ de((1.Q@led . )))

— o0
o0

dz (1. Q(a)]ef ™ (x.3) ),
(52)

(RFIX" (@, \) = J) Eg)|_ = z/

— OO
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H_

Ly )‘) — XiEBXi(wv >‘)7 ezﬁt(ma )‘) — POJ(XiEBXi(wa )‘))7

Ly >‘) — X/;EEB)A(/’ZE(:& )‘)7 eféi (377 >‘) — POJ(X/’iEﬁf(/’i(xa )‘))7
(53)

H_

are the natural generalization of the ‘squared solutions’ introduced first
for the sl(2)-case. By Py; we have denoted the projector Py; = ad jlad J
on the block-off-diagonal part of the corresponding matrix-valued func-
tion.

The right hand sides of eq. (53) can be written down with the skew—
scalar product:

oo

TX,Y] = / Ao (X (2), [ Y (2)]). (54)

— O

where (X,Y) is the Killing form; in what follows we assume that the
Cartan-Weyl generators satisty (Eo, E_g) = 00,5 and (H;, Hy) = k.
The product is skew-symmetric || X,Y|| = —[|Y, X || and is non-degenerate
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on the space of allowed potentials M. Thus we find
of =-i[Q),e;*], 5 =—i[Q).e" 5],

b+ B- G- B+
_’+ = — o p— _’+ = — = p— .
p _ mil_ ) p ml_ ) T m1|_ 9 T ml_

Thus the mappings § : Q(x,t) — T, can be viewed as generalized
Fourier transform in which eg(aﬁ,)\) and elﬁ’i(x,)\) can be viewed as
generalizations of the standard exponentials.

We apply ideas similar to the ones above and get:

opy = —illad ;'6Q(x), e57]],  dpg =iflad ;1 6Q(x), €7 5],
oty =ifad ; 0Q(z),eT,], oy = —iflad ;70Q(x), e5],

where 3 € AT
These relations are basic in the analysis of the related NLEE and
their Hamiltonian structures. Assume that

5Q(x,t) = Quot + O((51)2). (57)

(56)
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Keeping only the first order terms with respect to 0t we find:

dpf o g _ o - -
d—f = —i[[ad ; Qs(z),e;" ], d—f = iffad ;" Qu(x), €
angr dTﬁ_

dt
Completeness of the ‘squared solutions’

Let us introduce the sets of ‘squared solutions’

(O} ={¥}.U{¥}a, {®}={®}U{P}q,
{¥}. = {efa(a:,)\), e, (x,\), ANeER, ac AT} :
(Wly = {eia;j(x), éia;j(x), a€ AT, },
{®}.={el(x,N), el (z,\), XeR, aeAl},

{(I)}d = {eia;j(aj)? éia;j(aj)a Q< Aii_a } ’
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where 5 = 1,..., N and the subscripts ‘¢’ and ‘d’ refer to the contin-
uous and discrete spectrum of L, the latter consisting of 2N discrete
eigenvalues )\;E c C..

Theorem 1 (see V.S.G. (1998)). The sets {¥} and {®} form complete
sets of functions in M. The completeness relation has the form:

d(x —y)llyy; = %/OO dNGT (z,y,\) — G (2,9, \))

N (62)
=1
Moy = Y (BEa®E_o—E_® Ey),
ozEAi"
+ =+ + (63)
G (T,y,A) = Z eia(xv A) ® e:Fa(y7 A)s
aEAIL

ocEAii'
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Idea of the proof. Apply the contour integration method to the function
G*(w,y,A) = G (z,y,)0(y — ) — G5 (2,5, \)0(z — y),
Gil:(wv Y A) = Z eia(xv A) ® ei::;oz(y7 A)s

ozEAi{'

Gy (@A) = ) el (N ez, (y,N)+ Y hi(z,\)®@h (y,N),

OéEAoUAl_ J=1

Ry (z,A) = x* (2, NV H; R (2, X),

(65)
and calculate the integral
Jolz,y) = — j’{ IANGT (2, \) — — ]f DG (z,5,)),  (66)
T, y) = — x — — x
G\T,Y 9 - » Y 9 . » Y ’

in two ways: i) via the Cauchy residue theorem and ii) integrating along
the contours. []
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X A1

V4,00

X An

X AX

®Ourypa 1: The contours v+ = RU Y4o.
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Remark 1. There is a dual completeness relation for the ‘squared solu-
tions’ obtained by replacing all e (x, \) with ;% (z, \).

Expansions of Q(z) and ad ;'6Q(x).

Qw) = -+ / Y (m ek (2,2) — 7 (VeZy (M)
N a€A] (67)
_ 2; a§+ <f{eAS+ el (xz,\) + Ee}\i_ e (x, )\)) :
Q) =2 [ an 3 (e ) — g (el (@)
e (68)

N
+QZ Z (Res prelt(z,\) + Res pae;(:c,)\)>,

_|_ _ —_
J=1 aEAi” A=A A_Aj
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ad 716Q(z) = i/_ A\ Z (57 (Ve (@, \) + 677 (Ve (z, \))

N
—|—2Z Z (Res otrel (z,\) — Res 57(;6@(33,)\)) :

(69)
ad 7'6Q(x) = %/ d\ Z (dpd (A (z,A) + 6pg (NeL ™ (z,N))
B a€A+
N
— 92 R5++AR5—’»—,A.
g=1 ozEA;r J
(70)

These expansions combined with the proposition above give another
way to establish the one-to-one correspondence between Q(x) and each
of the minimal sets of scattering data J; and 7s.
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> ozEAi"
N
dr.t dr,,
Z o ot _ —% e
3P (Ee,\i gt ¢ (@A) = Res = eo‘(x’A)>’
Jj=1 aEAIL J ?
(71)
,dQ 1 [ dp Pa
1 « , a L/,
3G =5 ) 2 (d—e-a( Ve (“”’A))
OISYAN
N
dpt dpy
28 L (g ey ne o)
I=1 ae AT J ’
(72)
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The generating operators

Introduce the generating operators A4 through:

(A+ o )‘)eta(wv >‘) =0, (A—I— o )‘)e; (377 )‘) =0,

(A —Nel(z,\) =0, (A — e~ (2,A) =0 (73)

Their derivation starts by introducing the splitting:

eX(x, ) = edE (2, \) + e (x, V), edE (2, \) = (1 — Pyy)et(x, \),
(74)
into the equation

deq,
i—2 4 [Q(w) = M, ealw, )] = 0. (75)
T
which is obviously satisfied by the ‘squared solutions’. Then eq. (75)

splits into:

1—— +[Q(z), e (x, )] = 0, (76)



der
& 4 Q@) ey H (@, N)] = Al e (V)] (70)

Zdaz T

Eq. (76) can be integrated formally with the result

e (2, ) = COE(N) + i / dy [Q(). €t (y, \)]. (78)
CLEN) = lim edE(y,\),  e==+1. (79)
’ Y—> €00

Next insert (78) into (77) and act on both sides by ad ;'. This gives us:
(As = Neg (z,2) = i[CE (M), ad ;7 Q(a)], (80)

where the generating operators AL are given by:

AeX(@) =ad 7 (G +i Q@) [ aview. xw]|). @
(Ay — Net (z,)\) =0, (AL —Ne_ (z,\) =0, (82)
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(A_ — Nel(x,\) =0, (A= —NeZ (z, ) =0, (83)

Thus the sets {¥} and {®} are the complete sets of eigen- and adjoint
functions of A, and A_.

Fundamental properties of the MNLS equa-
tions

The principal class of NLEE

By principle class of NLEE we mean the ones whose dispersion laws take

the form:
F(A) = fF(M)J, (84)

where f(A) may be rational functions of A whose poles lie outside the
spectrum of L. The corresponding NLEE is

iad 7'Qy + f(A1)Q(z,t) = 0. (85)
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Theorem 2. The NLEFE (85) are equivalent to: i) the equations (11)
and i) to the following evolution equations for the generalized Gauss
factors of T'(\):

dST dT';
i—L +[F(\),ST]=0, i—L +[F(\),T;]=0, (86)
dt dt
and
dS7 _ AT N
t dt _l_[F()‘)aSJ] = 0, l dt +[F()‘)7TJ] = 0. (87)

The integrals of motion Hamiltonian properties of the
MNLS eqs.

The block-diagonal Gauss factors D?(A) are generating functionals of

the integrals of motion. The principal series of integrals is generated by
+
mi (A):

+InmT = Zlk)\_k. (88)
k=1
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Let us outline a way to calculate their densities as functionals of Q(x, ).
Use a third type of Wronskian identities involving x*(z, \). They have
the form:

()Qi)'(i(:z:, A) +iJx) ‘;O:_OO — —i/ dr (xJx(x,\) —J), (89)
which gives
d n [ .
iﬁ Inmi(\) = —i dr ((x(xz,\)JxJ) —1). (90)

Note that in the integrand of the above equation we have in fact (h(x, \)J).
Splitting hi (z, ) = h{=(z, A)+hi (2, ) into ‘block-diagonal” and ‘block-
off-diagonal’ parts we get

* =3 im hYT (2 ad 71Q(z
(Ao =Nt =i |l W@ adg0E]
= i[J,ad ;' Q(z)] = Q(a),
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(Ax — MDA (z,)) = Q(),
g (92)

B (e, 0) = J + / dy [Q(y), hE (2, ).
+ oo

Using eq. (92) and inverting formally the operator (A+ — \) we obtain
the relations:

:tc%\lnmit()\) _ —z/:; iz <<J+/:OO dy [Q(y),hf[(x,)\)],J> _ 1)
——i [ an [y (0.0 B 0)

_ _Z-/_OO iz L dy ([7,Q()], (As — N)1Q(x)).
(93)
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This procedure allows us to express the integrals of motion as functionals
of Q(x) in compact form:

zé / ‘:dx L ;dw,@(yﬂ, 1Q(x)) . (94)

Note: the operators Ay and A_ produce the same integrals of motion.
Using the explicit form of A4+ we find that:

_dQ _dQt Q-
MA@ =iad, dr daz d:z:
d2
Ne=-"2 v - Q.
d3 + d30O~
Q=T i i Q] +3i Q. [0, Qs

(95)

—

QF (x,t) = (q(z,t) - EY),  Q (x,t) = (la,t) - EY),
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Thus for the first three integrals of motion we get:

I — i / T 4z (Q*(2), 0 (2)),

=g [ de (QF@).Q @) - Q). Qs ). (96)
b=i [ do (@@, @) + Q@)@ (@LQ ). @ ().

111 — is the density of the particles, I is the momentum and —:/3 is the
Hamiltonian of the MNLS equations. Indeed, taking H = —il3 with
the Poissson brackets

{ak(y,t),pj(z, 1)} = idk;0(x — y), (97)

coincide with the MNLS equations (). The above Poisson brackets are
dual to the canonical symplectic form:

Qp = i/oo dx tr (0p(z) A 0q(x))

— 00
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- 1/OO dx tr (ad 31562(96) A [J, ad }1562(37)) (98)

v — 00

— % [ad 7'6Q(z) Aad ;16Q(x) ], (99)

The last expression for €2 is preferable to us because it makes obvious
the interpretation of 6Q(x,t) as local coordinate on the co-adjoint orbit

passing through J. It can be evaluated in terms of the scattering data
variations.

1 ©. @)
Qg = — dh (QF (A —2 ResQ+)\+ReSQ_)\ :
0= — . (0() Z(/\ > g ())
OF(\) = Y oTENDE AGpE,  DE, = (DB DF(N) B ),
a,vEA;r

Hierarchy of Hamiltonian formulations of MNLS:
1 1
Q= - [[ad JOQANAdTQ], A= (AL +A), (100)
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Hy, = i*T31, 5. (101)

We can also calculate 2; in terms of the scattering data variations. Doing
this we will need also eqs. (82) and (83). The answer is

I k (OF — : + —
Y = 5o | D) -9 () —z; (Qk,j +Qk;j) (102)
QOF = /\Iiefi AFQE(N). (103)

This allows one to prove that if we are able to cast )y in canonical
form then all €25 will also be cast in canonical form and will be pair-wise
equivalent.
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Modeling Soliton Interactions of the perturbed
vector nonlinear Schrodinger equation

The idea of the adiabatic approximation to the soliton interactions -
Karpman (1980)
Modeling of the N-soliton trains of the perturbed NLS eq.:

1
iUy + 5 Uea + [ulfu(x, t) = iR[u). (104)
N-soliton train
N .
2Vk€w5k
u(zx, ) 2 U (x, ), ug(x,t) cosh(z0)’
2 = 2vi(x — &k(1)), Ek(t) = 2pit + &k o,
Or = 5—:% + 0 (1), 0k (t) = 2(pui, + Vi)t + Op0.
(105)
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Adiabatic approximation holds true if:

v —vo| <o, |pk — pol <K po,

1 N 1N
VOZN];%, MO:N];Nk

Two different scales:
ve —vol ~ e, e — pol =g |&ks10 — Erol = ep
Consider perturbation by external potentials:
iR[u] = (Vax? 4+ Viz + Vo + Acos(Qx + Qo))u(z, t), Vo > 0. (108)

Perturbed CTC model (VSG et al (1996)):

dA
dtk — 4y, (er+1—Qk _ er_Qk—l) + My + iNy,
d
% = —Avphy, + 2i(po + i) Zk — i Xk, (109)

Ak = P + iV, X = 2upzyg + Dy,
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Q1 = —2u&), + kIndyg — i(0k + do + kT — 2p0&k),

1 & 1 & 1 &
VO:NE Vs, MOZWEN& 50:NE53-
s=1 s=1 s=1

Vl 1 7TA92
2 8Vk sinh Zk;
72 AQ? cosh Z,

(110)

N =0, M=V — sin(Q2 + ), Zx =0,

2

-
Dy, = — &) - Vi& — Vo — Q& + Qo),
k= Vo (48V,3 5k> 1€k 0 161/,3 R Z cos(2y + o)
Zr = Qr/(4vy).
(111)
Perturbed vector NLS:
1
iy + 5l + (@', @)i(z, t) = iR[). (112)
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Vector N-soliton train:

N
U(x,t =0) =Y ug(x,t=0),
k=1
Ll — 2Vk(LU — fk(t)),
O = &Zk + 0 (1),
V

. ( t) 2Vk€i¢k .
U (z,t) = 7
g cosh(zy) g

Ek(t) = 2pit + &k o,

Y

Ok (t) = 2(py, + Vi)t + dy0.

mn
E arg ny.s = 0.
s=1
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Variational approach and PCTC for PVNLS
and generalized CTC

el = [ ang [ - ) -

oo ! ! (114)
H[i] :/_OO dz [—§<ﬁ;,ax>+§(w,a)2—(ﬁT,ﬁ)V(a:) .

Then the Lagrange equations of motion:

coincide with the vector NLS with external potential V (x).
Insert u(x,t) = ijzl U (z,t) and integrate over x neglecting all
terms of order € and higher. Assume that at ¢t =0

§1 <& < <éN
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/ d:c(ukx,upx) / de (4!, ,), / dz (4!, ,)V (z),
(116)

with |p — k| > 2 can be neglected. The same holds true also for the
integrals

/ de (i, i) (@, @),

where at least three of the indices k, p, s, [ have different values.
Thus after long calculations we obtain:

L= Zﬁk + Z N Lkms Lin = 160320 Ry + R ),
k=1n=k=+1
Ry p = i (0n 5'“)(77/1"771) Ok = 0k — 2p0&k,
A p =25 nV0(Ek — &n) > 1, Skk+1 = —1, Skk—1 = L.
(117)
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L = —2ivy, ((ﬁlz,tvﬁk’) - (ﬁl,ﬁk,t)) + 8k vk —

dt
118)
ddg, 5 8} 3 mA cos(£g) (
— 4y —— — 8 —= + 2t Vo + — V&
vk dt HiVi 7+ 3 T amvEVo 8V 2t 2 cosh(Zy)
The equations of motion are given by:
d 0L 0L
— =0, 119
dt 5pk,t 0Dk ( )

where p; stands for one of the soliton parameters: o, &, pr, Vx and ﬁ,z
The corresponding system is a generalization of CTC:

d\

d—tk = —4u, (erz—l—l_Qk (ﬁk_l_l,ﬁk) — er_Qk—1<ﬁ;2,ﬁk—1>) + M. + 1Ny,
d . N di

% = —4dvg g + 2i(po + ivg) 2 — 1 Xk, d—tk — O(e),

(120)
Additional equations describing the evolution of the polarization vectors.

But we can replace (ﬁ,TC +1,7x) by their initial values

(I = m2, ¥ k=1,...,N—1 (121)
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Effects of the polarization vectors on the soli-
ton interaction

The CTC is completely integrable model; it allows Lax representation
L; = [A.L], where:

N N

L = Z (bsEss + ag (Es,s—i—l + Es+1,s)) ) A= Z (as (Es,s—i—l — Es—l—l,s)) )
s=1 s=1

s = eXp((Qs—l—l — Qs)/2)7 bs = Us,t + Z'l/s,ta (Eks)pj — 5kp53j

(122)

The eigenvalues of L (; = ks + i1, are integrals of motion and ~, deter-
mine the asymptotic velocities of CTC.
The GCTC is also a completely integrable model; its allows Lax rep-
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~

resentation L; = [A.L], where:

N N

L = Z (bsEss + ds(Es,s—i—l + Es—l—l,s)) ’ A= Z (aS(ES,S—i-l o E8+1,8)) )
s=1 s=1

Qs = m%ke%%"“as, bs = st + Vs

(123)

The eigenvalues of L, = k—+1ns are integrals of motion and ks determine
the asymptotic velocities for the soliton train described by GCTC.

Thus, starting from the set of initial soliton parameters we can calcu-
late L|;—o (resp. L|i—o), evaluate the real parts of their eigenvalues and
thus determine the asymptotic regime of the soliton train.

Regime (i) ki # K; (resp. kr # k;) for k # j, i.e. the asymptotic
velocities are all different. Then we have asymptotically separating,
free solitons, see also [?, 7, ?|

Regime (ii) k1 = ke =--- = ky =0 (resp. k1 = Ry = --- = ky = 0),
i.e. all N solitons move with the same mean asymptotic velocity,
and form a “bound state".
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Regime (iii) a variety of intermediate situations when one group (or
several groups) of particles move with the same mean asymptotic
velocity; then they would form one (or several) bound state(s) and
the rest of the particles will have free asymptotic motion.

Remark 2. The sets of eigenvalues of L and L are generically different.
Thus varying only the polarization vectors one can change the asymptotic
regime of the soliton train.

Several particular cases.

Case 1 n1 = --- = ny. Since the vector n; is normalized, then all
coefficients my,rx = 1 and ¢gr = 0. Then the interactions of the
vector and scalar solitons are identical.

Case 2 <ﬁj’;‘—|—l7 ns) = 0. Then the GCTC splits into two unrelated GCTC:
one for the solitons {1, 2, ..., s} and another for {s+1,s+2,....N}.
If the two sets of soliton parameters are such that both groups of
solitons are in bound state regimes, then these two bound states
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Case 3 (n] 1 7k) = mge*¥° — effective change of distance and phases

of solitons. Rewrite

ZLs — eXp((Qs—l—l - QS)/2)7 C}s—|—1 — Qs — Qs—|—1 — Qs + In mo + inga

i.e. the distance between any two neighboring vector solitons has
changed by Inmg/(21y); similarly the phases

Initial parameters of the solitons:

v (0) = 0.5, ¢r(0) = k, Ek+1(0) — &k (0) = o, e = 0.
(124)

Effects of external potentials
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®@urypa 2: The initial soliton parameters as like in (125) with rg = 9.
Left panel: scalar soliton train; Right panel: vector soliton train with
To = 9 and mops — 0.7.
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durypa 3: Left panel: vector soliton train with mgs = 0.8; Right panel:
vector soliton train with Mol = MMop3 = Mog — 0.8 and Mmoo — 0.031.
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®urypa 4: Oscillations of the 5-soliton train (see (125) in a moderately
weak periodic potential, A = 0.0005, 2 = 27/9, ro = 9. Left panel: the
trajectories as described by the CTC. Right panel: the numerical solution
of the NLS eq.
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®@urypa 5: The effect of the periodic potential on 7-soliton trains (125)
with rg = 7 and subcritical intensities. UL: Vo = —0.00075; UR: V5 =
—0.0012; Below: critical intensity:OVé7: —0.0013.



Conclusions

e The ISM for solving soliton equations can be viewed as Generalized
Fourier transform

e The recursion operators generate all fundamental properties of the
soliton equations

e The GCTC models the soliton interaction in adiabatic approxima-
tion for the vector NLS
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