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0. Introduction.

(M ,g) : oriented n-dimensional pseudo-Riemannian manifold
(M, g) : oriented pseudo-Riemannian submanifold
f: M — M : isometric immersion

H : mean curvature vector field



Problem. : Classify f: M — M with H =0

e Riemannian case : When M = S™(c), M = S?(K) of constant

curvatures ¢ > 0 and K > 0, a full immersion f with H = 0 is congru-
ent to the standard immersion (E. Calabi, J. Diff. Geom., 1967). The

twistor space of M = S"(c) and the twistor lift play an important

role.

e In this talk, we consider the problem above in the case of M = Q%(c) =

pseudo-Riemannian space form of constant curvature ¢ and index s, and

M =Lorentz surfaces , in particular, n = 2m and s = m.

()



e This talk is consists of

1. Examples of Lorentz surfaces in pseudo-Riemannian space forms
with H = 0.

2. Reflector spaces and reflector lifts.

3. A Rigidity theorem.

4. Applications.



1. Examples of Lorentz surfaces with H = 0.

e In “K. Miura, Tsukuba J. math., 2007, pseudo-Riemannian subman-
ifolds of constant curvature in pseudo-Riemannian space forms with

H = 0 are constructed from the Riemannian standard immersion us-

ing “ Wick rotations ”.

Klx]| := K|[x1,...,2,11] : polynomial algebra in n + 1 variables
ZT1,...,2nt+1 over K (K =R or C).
Kglx] C K[x] : space of d-homogeneous polynomials

R?H : pseudo-Euclidean space of dim=n + 1 and index=t



ntl —1 1<i<t)
Rn—|—1 = — Z s, 5 where €; = |«

1 t+1<i<n+1)

\

HRPT) := KerAR?H
Ha(RY™) := H(RY™) N Kalz]



We define p; : C[xz] — C[x] by

pi(x;) = <
T; t+1<i<n+1)

\
® p; is called “Wick rotation”.

Set o; := p; o p; and PtjE := Ker(o¢|r[z] F tdr[))-
We define H,(R§™) := P;" N Hq(RG™).



o Ha(Rg™) = Hy,(Rg™) © Hy(R™)

{u;}; :orthonormal basis H4(R{ ) s.t.
Ulyeoo, U € ’H;,t(Rg‘H),

1

m-+1

D (wi)? = (af + -+l )
i=1

where l = I(d,t) = dimH_,(R§™") and m+1 = m(d, t)+1 = dim Ha(Ry ™).



Hereafter, we assume n = 2 and t = 1 (for simplicity). Then we see

that m = 2d + 1 and | = d. We define
U, :=Imp;(u;) (2=1,...,d)
and

U; := Rep(u;) (1 =d+1,...,2d +1)

Using these function, we define an immersion from ¢ : Q3(1) — Qfld(—d(d; 1))

by ¢ = (Uy,...,Usz4:1). Note that ¢ satisfies H = 0.



For example, whend =2 (n =1,t = 1), ¢ : Q3(1) — Q3(3) is given by

U =xy,U; = zx

V3

1
Us =yz, Uy = ?( +22° +y° +2%),Us = 5(?!2 — z%).

e Composing homotheties and anti-isometries of Q%(1) and Q3% @),
we can obtain immersions from Q?(2¢/d(d + 1)) to Q%*(c) with H = 0

(c # 0). We denote this immersion by ¢g. -




2. Reflector spaces and reflector lifts.

(See “G. Jensen and M. Rigoli, Matematiche (Catania) 45 (1990), 407-

443. )

(M ,g) : oriented 2m-dim. pseudo-Riemannian manifold of
neutral signature (indexz% dim M )
J, € End(T, M) s.t.
o J?=1,
0 (J2)*Fe = —G
o dim Ker(J, — I) = dim Ker(J, + I) = m,
o J, preserves the orientation.

(10)



Z, : the set of such J, € End(T, M)

ZM) = | z,

a:EM
(the bundle whose fibers are consist of para-complex structures)

° Z(M ) is called the reflector space of M, which is one of corre-

sponding objects to the twistor space in Riemannian geometry.

(M, g) : oriented Lorentz surface with para-complex structure
J e Z(M).

f: M — M : isometric immersion

(11)



Def. : The map J : M — Z(M) satisfying J(2)|rm,pm = fx 0 Jy is

reflector lift of f.

Def. : The reflector lift is called horizontal if VJ = 0, where V is

the Levi-Civita connection of M .

e Surfaces with horizontal reflector lifts are corresponding to superminimal

surfaces in Riemannian cases.

(12)



Prop. The immersion ¢n, . : Q*(2¢/m(m + 1)) — Q?*™(c) in §1

admits horizontal reflector lift.

(13)




3. A Rigidity theorem.

(M ,g) : oriented n-dim pseudo-Riemannian manifold
(M, g) : oriented pseudo-Riemannian submanifold

f: M — M : isometric immersion

~

V : Levi-Civita connection of M .

We define 6X1 = X1, %(Xl,X2) = 6X1X2 and inductively for k£ > 3
V(X1,..., Xi) = Vx, V(X3 ..., Xi),

where X; € T'(TM).

(14)



We define
Osch(f) := {(V(X1,-.-, Xi))a | Xi € T(TM),1 < i < k}

and

Osc®(f) := U Osct(f).

xeM

e TM = Osc'(f) C Osc*(f) C --- C Osc*(f) C --- C f#(TM).
e There exists the maximum number m such that Osc'(f),..., Osc™(f)
are subbundles of f#(TM ) and the induced metrics of all subbundles

Osc'(f), ...,0sc™(f) are nondegenerate. Then f is called

nondegenerately nicely curved

up to m.

(15)



Thm. : Let f, f: M — Q?™(c) be an isometric immersions from

a connected Lorentz surface M with horizontal reflector lifts. If

both immersions f and f are nondegenerately nicely curved up to

m, then there exist an isometry ® of Q?™(c) such that f = & o f.

Remark. The immersion ¢, : Qi(2¢/m(m+ 1)) — Q*™(c) in §1

is nondegenerately nicely curved up to m.

(16)




Cor. : Let f: M — Q?"(c) be an isometric immersion from a

connected Lorentz surface M with horizontal reflector lift. If f is
nondegenerately nicely curved up to m and the Gaussian curvature
K is constant, then K = 2¢/m(m + 1) and f is locally congruent

to O c.

(17)




4. Applications.

e When f is called nondegenerately nicely curved up to m, we can
define the (k—1)-th normal space N*~! which is defined the orthogonal

complement subspace of Osc*™1(f) in Osc®(f).

Def. : When f is nondegenerately nicely curved up to m, we

define (k + 1)-th fundamental form o**! as follows :
~ k
X1y ey Xiy) 1= (V( X1y ooy X))

where X; e I'(TM) (1<:<k+1)and 1 <k<m-—-1

(18)



o If M = Q"(c), a**! is symmetric.

V, W : vector spaces with inner products ( , )

B:VXV... XV — W : symmetric k-multilinear map to W.

For the sake of simplification, we set

IB(Xk) "= B(;Xaax)

k

for X € V.

(19)



Def. : We say that 3 is spacelike (resp. timelike) isotropic if

(,B(u"’),ﬁ(u"’)) is independent of the choice of all spacelike (resp.
timelike) unit vectors u. The number (3(u*), 3(u*)) is called space-

like (resp. timelike) isotropic constant of 3.

e 3 is spacelike isotropic with spacelike isotropic constant A\ <— 3 is

timelike isotropic with timelike isotropic constant (—1)*X.

(20)



Def. : We say that the k-th fundamental form of is spacelike

k

(resp. timelike) isotropic if o

is spacelike (reps.  timelike)

isotropic at each point p € M. The function Ay : M — R de-

fined by Ax(p) := spacelike isotropic constant of a;’ is called the

spacelike (resp. timelike) isotoropic function. If the spacelike (resp.

timelike) isotoropic function Ay is constant, then k-th fundamental

k

form a” is called constant spacelike (resp. timelike) isotropic .

(21)




Prop. : Let f: M — Q7(c) be an isometric immersion with H =

* are spacelike isotropic for

0. If the higher fundamental forms «
2 < k < m and their spacelike isotropic functions are everywhere
nonzero on M. Then we have n > 2m and s > m. In particular, if

n = 2m, then s = m and f admits horizontal reflector lift.

(22)




Cor. : If f: M — Q%" (c) be an isometric immersion with H = 0
such that o are spacelike isotropic for 2 < k < m whose isotropic
functions are everywhere nonzero and M has a constant (Gaussian
curvature K, then we have s = m, K = 2¢/m(m + 1) and f is

locally congruent to the immersion ¢,

(23)




Consider the following condition :

(1) An isometric immersion f maps each null geodesic of M into

a totally isotropic and totally geodesic submanifold L of M.

e L is totally isotropic : <= g|r = 0.

e L is totally geodesic : < VxY € I'(TL) for all X, Y € I'(TL).

Remark. The immersion ¢,, . satisfies the condition (7).

(24)



Cor. : Let f: M — Q**(c) be an isometric immerison with

H =0. If K = 2¢/m(m + 1) and the condition (f) holds, then

s = m and f is locally congruent to the immersion ¢, ..

(25)




