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What is Rotation ?

• Not intuitive
– Formal definitions are also confusing

• Many different ways to describe
– Rotation (direction cosine) matrix
– Euler angles
– Axis-angle
– Rotation vector
– Helical angles
– Unit quaternions



Orientation vs. Rotation

• Rotation
– Circular movement

• Orientation
– The state of being oriented
– Given a coordinate system, the orientation of an 

object can be represented as a rotation from a 
reference pose

• Analogy
– (point : vector) is similar to (orientation : rotation)
– Both represent a sort of (state : movement)



2D Orientation
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2D Orientation

Although the motion is continuous, 
its representation could be discontinuous
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2D Orientation

Many-to-one correspondences 
between 2D orientations and their 
representations
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Extra Parameter
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Extra Parameter
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2x2 Rotation matrix is yet 
another method of using 
extra parameters



Complex Number
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Complex Exponentiation
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Rotation Composition
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2D Rotation

• Complex numbers are good for representing 2D 
orientations, but inadequate for 2D rotations

• A complex number cannot distinguish different rotational 
movements that result in the same final orientation
– Turn 120 degree counter-clockwise
– Turn -240 degree clockwise
– Turn 480 degree counter-clockwise
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2D Rotation and Orientation

• 2D Rotation
– The consequence of any 2D rotational movement can be 

uniquely represented by a turning angle
– A turning angle is independent of the choice of the reference 

orientation

• 2D Orientation
– The non-singular parameterization of 2D orientations requires 

extra parameters
• Eg) Complex numbers, 2x2 rotation matrices

– The parameterization is dependent on the choice of the 
reference orientation
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3D Rotation

• Given two arbitrary orientations of a rigid object,

How many rotations do we 
need to transform one 

orientation to the other ?
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θ

3D Rotation

• Given two arbitrary orientations of a rigid object,

we can always find a fixed axis of rotation 
and a rotation angle about the axis



Euler’s Rotation Theorem

In other words,
• Arbitrary 3D rotation equals to one rotation 

around an axis
• Any 3D rotation leaves one vector unchanged

The general displacement of a rigid body with
one point fixed is a rotation about some axis

Leonhard Euler (1707-1783)



Euler Angles

• Rotation about three 
orthogonal axes
– 12 combinations

• XYZ, XYX, XZY, XZX
• YZX, YZY, YXZ, YXY
• ZXY, ZXZ, ZYX, ZYZ

• Gimble lock
– Coincidence of inner most 

and outmost gimbles’
rotation axes

– Loss of degree of freedom



Rotation Vector

• Rotation vector (3 parameters)

• Axis-Angle (2+1 parameters)
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3D Orientation
• Unhappy with three parameters 

– Euler angles
• Discontinuity (or many-to-one correspondences)
• Gimble lock

– Rotation vector (a.k.a Axis/Angle)
• Discontinuity (or many-to-one correspondences)
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Using an Extra Parameter

• Euler parameters
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Quaternions

• William Rowan Hamilton (1805-1865)
– Algebraic couples (complex number) 1833
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Quaternions

• William Rowan Hamilton (1805-1865)
– Algebraic couples (complex number) 1833

– Quaternions 1843

iyx + 12 −=iwhere

kzjyixw +++

jikikjkji
jkiijkkij

ijkkji

−=−=−=
===
−====

,,
,,

1222where



Quaternions

William Thomson
“… though beautifully ingenious, have been an 

unmixed evil to those who have touched them in 
any way.”

Arthur Cayley
“… which contained everything but had to be 

unfolded into another form before it could be 
understood.”



Unit Quaternions

• Unit quaternions represent 3D rotations
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Rotation about an Arbitrary Axis

• Rotation about axis     by angle

1−=′ qpqp ),,,0( zyx=pwhere

),,( zyx
),,( zyx ′′′

Purely Imaginary Quaternion

v̂ θ

⎟
⎠
⎞

⎜
⎝
⎛=

2
sinˆ,

2
cos θθ vq



Unit Quaternion Algebra

• Identity

• Multiplication

• Inverse

• Unit quaternion space is
– closed under multiplication and inverse,
– but not closed under addition and subtraction
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Tangent Vector
(Infinitesimal Rotation)
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Tangent Vector
(Infinitesimal Rotation)
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Tangent Vector
(Infinitesimal Rotation)
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Rotation Vector
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Rotation Vector
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Rotation Vector

2
1

1 qq−

1
1

1 qqI −=

( )( )2
1

11

12

logexp

)exp(

qqq

vqq
−=

=

( )2
1

1log qqv −=

1p

12 ppu −=

2p

)( 121

12

ppp
upp

−+=
+=

3R



Rotation Vector

• Finite rotation
– Eg) Angular displacement
– Be careful when you add two rotation vectors

• Infinitesimal rotation
– Eg) Instantaneous angular velocity
– Addition of angular velocity vectors are meaningful
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Coordinate-Invariant Operations



Analogy

• (point : vector) is similar to (orientation : rotation)



Rotation Conversions

• In theory, conversion between any 
representations is possible

• In practice, conversion is not simple because of 
different conventions

• Quaternion to Matrix
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Method for Mapping the Four-Dimensional Spa-
ce onto the Oriented Three-Dimensional Space

For further presentation, we recall the notion of three-dimensional sphere S3 ⊂ R4. 
Such a sphere defined as a subspace of the four-dimensional vector space R4 is 
determined by the well-known expression



The sphere S3 has the structure of a three-dimensional analytic connected 
closed oriented manifold, just as the three-dimensional rotation group SO(3). 
Therefore, such a sphere S3 can in a standard way be embedded in a four-dimensio
nal arithmetic space R4 equipped with the structure of quaternion algebra. 
In this case, the four-dimensional vector  x = (x1, x2, x3, x4)T whose coordinates are       

x1 = λ0, x2 = λ1, x3 = λ2,  x4 = λ3, 
respectively, can be represented in the well-known algebraic form (2.2) of the classi-
cal Hamiltonian quaternion Λ.    The sphere projection  S3 → RP3  associates  each s
uch a quaternion   Λ ∈ S3 ⊂ R4   with a pair of quaternions (Λ,−Λ), which corres-
pond to two identified opposite points on the surface of the three-dimensional sphere 
S3.

If the four real parameters  λ0, λ1, λ2, λ3 ∈ R1  of the classical Hamiltonian 
quaternions Λ ∈ R4  are used, the mapping of the sphere  S3 ⊂ R4 onto the space  
SO(3) of all possible configurations of a rigid body with a single immovable (fixed) 
point is two-sheeted.



METHOD  OF  LOCAL  THREE-DIMENSIONAL  PARAMETRIZATION
Consider the stereographic projection of the above-introduced three-dimensional 

sphere S3 ⊂ R4 onto the oriented three-dimensional vector subspace R3 (the hyp-
erplane Γ3 ⊂ R3)  in more detail. For the standard sphere  S3 of unit radius |r| = 1, 
we have the well-known relation (2.6). Inturn, the sphere S3 itself as a subspace of 
the space R4 has the structure of an analytic connected oriented manifold, 
which  is a submanifold of the space R4.    In the case of stereographic projection
(mapping)  S3 → R3, any point on S3 opposite to the hyperplane Γ3 ⊂ R3  can be t
he center of the  projection. Note that, in addition, the mapping considered here is 
also a conformal mapping.   Indeed, the stereographic projection of the sphere S3
canbe considered as part of the conformal mapping of the finite four-dimensional 
R4 → R4  (into itself),   because the stereographic projection can be continued to
such a mapping.  

An exception is the projection center α, which corresponds to the single point at 
infinity in R4. Under the stereographic projection, the point at infinity of the hyperp-
lane  Γ3 ⊂ R3  is associated with a single point of the sphere S3,  i.e., the pole poi-
nt α. Because of the above property and the fact that the mapping itself is confor
mal,  we use the method of the stereographic projection  S3 ⊂ R3. 

The mapping considered here associates the four co-ordinates (x1, x2, x3, x4) 
of a global vector  x ∈ R4 with the three coordinates  (y1, y2, y3)  of a local vector 
y ∈ R3.     Usually, the operation of such projection can be written symbolic-ally as 
the chain S3\{α} → R3. We prescribe the center of the stereographic projection α, n
amely, the pole of the three-dimensional sphere S3, for which we take the chosen 

i t f th th l ith th i i k di t (0 0 0 1)



CONTINUE

• Then the straight line passing through the given pole α(0, 0, 0, 1) and an arbitrary p
oint x ∈ S3 on the surface of the sphere S3 intersects the oriented vector subspa-c
e R3 at some point, which we denote by ϕ(x).

• Just themapping taking such a point x∈R4 to the oriented subspace R3
(x→ϕ(x)∈R3)   homeomorphism between the sphere S3 (with a single punctured p
oint α) and the space R3. In this case, there exists a stereographic projection of
the four-dimensional vector x ∈ M3 ⊂ R4 onto the oriented subspace R3.

• Therefore, the point of intersection of the straight line drawn from the pole α ∈ M3 
through an arbitrary point  x ∈ R4  on the surface of the sphere  S3 corresponding 
to the vector   x(x1, x2, x3, x4) with the oriented space  R3 gives a single point 
of intersection ϕ(x) on the hyperplane Γ3 ⊂ R3, i.e., the desired three-dimensional 
vector  y ∈ R3.        Here we present the three coordinates of this point in the form
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Explaining slide

For the subsequent calculations, we introduce a rectangular 3 × 4  matrix V o
f the projective transformation satisfying the identities

where E is the unit 3 × 3 matrix and α =( 0, 0, 0, 1)T is a  4 × 1 column vector.
Under the mapping considered here, i.e., under the stereographic projection, 
the intersection point  ϕ(x) ∈ R3  coincides with the desired three-dimensional v
ector of local parameters y ∈ R3.  Then, changing the notation ϕ(x) ⇔ y  and us
ing identities (3.1) and (3.2), we have the coupling equation for the two vecto-rs
x ∈ R4 and y ∈ R3 introduced above:

where x ∈ M3 ⊂ R4 and V is the rectangular 3 × 4 matrix of projection written as two matri
ces: V = E3×3|03×1. Thus, Eq. (3.3) obtained above is the point of intersection ϕ(x) ≡ y ∈
R3 of the straight line connecting the point α of the center (pole) of the stereographic proj
ection and an arbitrary point  x ∈ M3 ⊂ R4  on the sphere  S3 itself with the oriented sub
space R3. Note that Eq. (3.3) relating three- and four-dimensional vectors is defined 
for all x ∈ M3 ⊂ R4 except x ∈ α. The latter can readily be proved, because the point α of 
the projection center (pole) does not belong to the set M3. Then, prescribing the four line
ar coordinates x1, x2, x3, x4 of a point  x ∈ M3 ⊂ R4 and using (3.3), one can readily obt-
ain the three desired local parameters, i.e., the coordinates y1, y2, y3 of the point of inter
section ϕ(x) ⇔ y (y ∈ R3) We illustrate this by an example of the above mapping
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