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I. INTRODUCTION
The coadjoint action of a Lie group G  gives rise to the 
coadjoint orbits, which are homogeneous G -spaces. On 
the other hand, associated with G  we have its unitary 
dual lG , (the space consisting of the irreducible unitary 
representations of .G ) 

G

Coadjoint orbits

Irr. unitary
representations



The study of the possible relations between the set of 
orbits (“geometric objects”) and lG  (a set of “algebraic 
objects”) is the aim of the Orbit method.  
 
In this talk we will also describe some aspects of those 
relations. 
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II.  ABOUT THE ORBIT METHOD

Theorem (Kirillov). Let G  be a nilpotent connected 
simply connected Lie group. Then  

Ĝ ={irreduc. unitary representation of G } 
7 

{coadjoint orbits of G }. 
 

Furthermore, Kirillov gave interpretations of facts 
relative to representation theory in terms of the geometry 
of the coadjoint orbits. 



For example, if O is the coadjoint orbit of  
( )Lie Gη ∗ ∗∈ =g  and π  is the corresponding 

representation in the above bijection, then 

          2 ( )(exp ) i A

O

A e d volπ η
πχ = ∫  

Is that theorem valid for a general Lie group? 
No. The complementary series of representations of 

(2, )SL \  are not attached to coadjoint orbits. 



The orbit method is based in the idea that a bijective map 
similar to the preceding one there exists for any Lie 
group if we modify the domain and the range of the 
map.   

{Coadjoint orbits} {Irre. unit. representations}

Orbit method 



The physical ground of the Orbit method is related with 
the quantization.  
 
Symplectic geometry is a mathematical model for 
classical mechanics. The phase space of a classical 
system is a symplectic manifold. A homogeneous G -
manifold can be considered as a class. system equipped 
with a group G  of symmetries.  
 
A Hilbert space is a mathematical model for quantum 
mechanics. Thus, a representation may be regarded as a 
quantum system endowed with a group of symmetries.  



Classical and quantum mechanics can be considered as 
different descriptions of “the same physical system”. So, 
for each classical system there should be a corresponding 
quantum system, and theoretically, one could construct 
from a classical system the respective quantum system.  
When there is the action of a group G , this construction, 
going from the orbit (the homogeneous G -space) to an 
irreducible representation, is precisely what the orbit 
method asserts should exist. 
 
The mathematical translation of this physical 
considerations is implemented by the geometric 
quantization. 



Geometric Quantization and Borel-Weil Theorem

( , )N ω  symplectic quantizable manifold, there exists a 
complex line bundle L with [ ]1(c  )= ωL . 

Each Hamiltonian vector field X  on N  has associated 
an operator XQ  (quantization operator) acting on the 
sections of .L� 
If G  acts on N  as a group of Hamiltonian 
symplectomorphisms, A∈g defines a vector field AX  
and  

{ }AXQ  

form a representation of g. 



When ( , )N ϖ  is the coadjoint orbit of an integral element
of g* endowed with the Kirillov structure and G is 
compact, then L is G -equivariant. There exists a 
representation of G  on sections of L. The choice of a 
subalgebra of g permits us to define polarized sections. On 
this space takes place an irreducible representation of G . 
(Borel-Weil theorem)  



Quantum systems
with G as group
symmetries

Homogeneous
symplectic G-
spaces

Classical systems
with G as group
symmetries

Hilbert spaces with a 
representation of G

Quantization

Orbit method
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III. DISCRETE SERIES

Not every representation is associated to an orbit, here 
we will consider the discrete series representations. 
Firstly, the regular representation of G  is the space 

2 ( )L G  endowed with the left translation.  

For 2 ( )f L G∈  and ,g G∈  
1( )( ) ( ).g f x f g x−=i  

An irreducible unitary representation π  of G  is said to 
be in the discrete series of G  if it can be realized as a 
direct summand of the regular representation. 



This is equivalent to the fact that the Plancherel measure 
for the decomposition of 2 ( )L G  assigns strictly positive 
mass to the one-point set { }π  in the unitary dual of G  
(from this property comes the name “discrete” series). 
If G  is compact, every irreducible representation is in 
the discrete series. 

If G  possesses discrete series representations, it contains 
a compact Cartan subgroup T . Kostant and Langlands 
conjectured the realization of the discrete series by the 
so-called 2L -cohomology of holomorphic line bundles 
over /G T  (proved by Wilfried Schmid). 
For G  compact the conjecture reduces to the B-W 
theorem. 
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IV. PURPOSES OF THIS TALK
In the spirit of the Orbit Method using the geometric 
construction of Schmid, we describe interpretations of 
some invariants of discrete series representations in 
terms of geometric concepts of the orbits. 

G  a linear semisimple group, T G⊂  compact Cartan 
subgroup and π  in the discrete series. 
(1) If 1 ( )g Z G∈ , the operator 1( )gπ  commutes with 
the operators ( )hπ . By Schur's lemma 1( )gπ  is a 
multiple of the identity. 

1( ) ,g Idπ κ=  

with (1)Uκ ∈ . 



We will give geometric interpretations of κ  in terms of 
objects related with / .G T  
For G  compact, κ  is the symplectic action around 
closed curves in / .G T  



(2) The differential representation 'π  of g, defines an 
irreducible representation of ( )U ^g , (universal 
envelopping algebra). The infinitesimal character gives the
action of the centre of ( )U ^g . It is the simplest invariant 
of 'π . 

We will relate the infinitesimal character with the 
quantization operators on vector bundle over / .G T  

(3) Finally, we use the above results to give lower 
bounds for the cardinal of the fundamental group of the 
Hamiltonian group of /G T . 
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V. GEOMETRIC FRAMEWORK

Let G  be a linear semisimple Lie group, T a compact 
Cartan subgroup and K  a maximal compact subgroup 
T K⊂ .  
By ∆  we denote a positive root system of ⊗^ ^t := t ,  

 
1:
2 ν

ρ ν
∈∆

= ∑  

ν ⊂ ^g g  is the root space of ν . A root ν  is compact if 
ν ⊂ ^g k   



We define 
ν

ν
−

∈∆= ⊕u : g  

We put b for the Borel subalgebra ⊕^b = t u  and 
denote by B  the Borel subgroup G^ . The flag variety of 

^g  is diffeomorphic to /G B^ .  

The G -orbit of b in the flag variety of ^g  is a complex 
submanifold /M G T� . 

M=G/T

Flag variety
GC/B .

b



Let φ  be an element of the weight lattice of t . φ  induces 
a character Φ  on B  in a natural way. 

Denoting by ( , )⋅ ⋅  the Killing form on ∗t , we put q  for 

{ }
{ }

:= | compact ( , ) 0

| noncompact ( , ) 0

q #

#

ν ν φ ρ ν

ν ν φ ρ ν

∈∆ + < +

∈∆ + >
 

In particular, when G  is compact and φ  is dominant, 
0.q =  



We set  

: ( )qW ∗= ⊗ ∧^ u , 
and define the representation  

( Ad) : GL( )q T W∗Ψ = Φ⊗ ∧ →  
With Ψ  we construct 

: GL( ) /G W M G TΨ= × → =P�  

: G W MΨ= × →W�  

The G -actions on /M G T=  and on W  induce the 
following representation on ( )Γ W : 

1( )( ) ( ( )).g x g g xσ σ −=i  



On P it is possible to define an G -invariant connection. 
The covariant derivative in W  is denoted by ∇ . 

,P W  are the geometric framework for our 
developments. The vector bundle W  plays a similar role 
as the prequatum bundle in geometric quantization. And 
the subspace H of ( )Γ W  corresponds to the space of 
polarized sections in the formulation of Borel-Weil 
theory. 

If φ ρ+  is regular, Schmid theory defines a subspace 
( ),⊂ ΓH W  in which the restriction of the above 

representation is irreducible. This restriction is the 
discrete series representation π  of ,G  associated with 
weight φ .  
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VI.  REPRESENTATION DIFFERENTIAL        
AND  QUANTIZATION OPERATORS

Assume that iφ ρ ∗+ ∈ t  is regular.  

We denote by KH  the space of K -finite vectors in H  
(Harish-Chandra module of H). 'π  the differential 
representation of π  on KH . 

The decomposition  

( )ν ν
ν∈∆= ⊕ ⊕^ ^

-g t g g  

induces a direct sum decomposition ⊕g = t l . The 
component of C∈ g  in t  is denoted 0C . 



For A∈g, we denote by AX  (vector field on M).  

: ( )Ah G W→ gl ,     1
0( ) : '(( ) ).Ah g g A−= Ψ ⋅  

: , ( , ) , ( )( )A A AF F g v g h g v→ =W W  

The differential operator :
AA X AQ F= −∇ +  acting on 

sections of W  is the analogue of the quantization 
operator. 

That is, if G  is compact and φ  dominant, then W  is a 
prequantum bundle and AQ  is the respective quantization 
operator associated to AX  by geometric quantization. 

The operators AQ  will be called “quantization operators”. 



Theorem 1. The correspondence AA Q→  defines a 
representation of the Lie algebra g on the space KH , 
which is equivalent to '.π  

The universal enveloping algebra ( )U ^g  is defined as 
the quotient of the tensor algebra ( )T ^g  by the 2-sided 
ideal generated by  

[ ], , ,XY YX X Y X Y− − ∈ ^g  

The representation 'π  determines a representation of the 
associative algebra ( )U ^g . The elements of the centre 

( )Z g  of ( )U ^g  play an important role in representation 
theory (among the elements of degree 2 in the centre is 
the Casimir). 



As a consequence of the generalization of Schur's lemma 
(due to Dixmier), ( )J Z∈ g  is a scalar operator in the 
representation induced 'π . The resulting homomorphism 

: ( )Zχ → ^g  

is the infinitesimal character of the ( )U ^g -module KH . 

Let 1,...., rC C  be a basis of t , and Eν  a basis of νg , then 

J  is a polynomial ( , )ip C Eν  in the “variables” ,iC Eν  

 We can prove the following theorem: 
Theorem 2. The corresponding differential operator 

( , )
iC Ep Q Q

ν
 on the space KH  is the scalar one defined 

by the constant ( ).Jχ  
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VII. INVARIANTS DEFINED BY SCHUR’S
LEMMA

If 1 ( ),g Z G∈  then 1 1( ) ( ) ( ) ( ), .g h h g h Gπ π π π= ∀ ∈  
By Schur's Lemma  

1( ) Id ,gπ κ= H  

with (1).Uκ ∈  

To know the action of 1( )gπ , we will “integrate” 'π
along a curve in G  with initial point at e  and end at 1g . 

G g1e ..



Henceforth, { }| [0,1]tg t∈  stands for an arbitrary 
smooth curve in G  with the initial point at e  (a path in 
G ). 

G
gt

e.

We denote by { }tA ∈g  the corresponding velocity curve,  

 1: .t
t t

d g
A g

dt
−=  



We can consider the set ( )tσ ∈Γ W  defined by the 
following “evolution equations”: 

0( ), .
t

t
A t

d
Q

dt
σ

σ σ σ= =   

.
e

. Z(G)

G
gt .

Theorem 3. If 1 ( ),g Z G∈  then  

1σ κσ= , 

for any .Kσ ∈H  



W
σ1

x κσt

σ0σ =

M



For each A∈ g the natural G -action on 
GL( )TG W= ×P  determines a vector field AY .  

So, a path tg  defines the time-dependent vector field 
tAY  

and the corresponding flow tH .  

The following theorem gives other interpretation of κ  in 
the context of P . 
Theorem 4. If 1 ( )g Z G∈ , then 1H  is the gauge 
transformation  

1( ) .p pκ=H  



By the G -action on / ,M G T=  the path tg  determines 
an isotopy { }| [0,1]t tϕ ∈  of ;M  that is, 

( ) .t tgT g gTϕ =  

If 1 ( ),g Z G∈  then { }tϕ  is a loop in Diff ( ).M  



M

ϕt(x0)x0.

e

g1ε Z(G)
gt

G.
.

Diff(M)

ϕt.
Id



. XAt

M

x0

ϕt(x0)

YΑt

GL(W)

x κ

P



The invariant κ  also appears in the evolution of GL( )W -
equivariant W -valued functions on .P� 
Theorem 5. If :tf W→P�  is the family of equivariant 
maps solution of 

0( ), ,
t

t
A t

d f
Y f f f

dt
= − =  

then 1f fκ= . 



When G  is compact and φ  is a regular dominant weight, 
π  is the representation provided by the Borel-Weil 
theorem. 
In this case M  is the flag variety of ^g , i.e., a compact 
manifold diffeomorphic to the coadjoint orbit of φ ∗∈g . 
On M  is defined the Kirillov form ϖ . 

Furthermore, { }tϕ  is a loop in Ham( , )M ϖ  and 
tAh  the 

time-dependent Hamiltonian. 
Given an arbitrary point 0x M∈ , the closed curve 
{ }0( ) | [0,1]t x tϕ ∈  is nullhomologous. 



The symplectic action around the loop { }tϕ  is the 
element of / .\ ]   

1

00
( ) : ( ( )) ,

tA tC
h x dtϕ ϖ ϕ= + +∫ ∫ ]SA  

C  being a 2-chain whose boundary is  

{ }0( ) | [0,1] .t x tϕ ∈  

M

ϕt(x0)x0. C



From the preceding theorem, it follows 
Theorem 6. If G  is compact, φ  is a regular dominant 
weight and 1 ( )g Z G∈ , then  

 ( )exp ( ) .κ ϕ= SA  
 

As a consequence, we deduce that ( )exp ( )ϕSA  takes 
the same value for all the paths with end point at 1g .  

..e G
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VIII. HOMOTOPY GROUP OF SUBGROUPS 
OF Diff(M)

Let ( )MX  denote the Lie algebra of all vector fields on 
.M  We will consider subalgebras X' of ( )MX , such 

that each Z ∈X'  admits a lift to a vector field U  on P  
satisfying 0UΩ =L , where Ω  is the connection form on 
P .  
Let G  be a connected Lie subgroup of Diff ( )M , which 
contains the isotopies associated with paths in G  and 
such that Lie( )G  is subalgebra of some X'. 



Using the interpretation of κ  as a gauge transformation 
which is the final point of a curve of automorphisms of 
P . One can prove 
Theorem 7.  

 { } 1( )| ( ) ( ( )).# g g Z G # πΨ ∈ ≤ G  

 
Corollary 8. If G  is compact, φ  is a regular dominant 
weight and G  is any connected subgroup of 
Ham( , )M ϖ  that contains G , then  

 { }( )| ( )# g g Z GΦ ∈  

is a lower bound of 1Card ( ( ))π G . 



Example

For SU(2)G =  the corresponding flag manifold is 1P^ .  

Let φ  be the weight of (1)T U=  defined by  

(diag( , )) .ai ai aφ − =  
The corresponding Kirillov symplectic structure ϖ  is 
equal to 2 FSπω− . So  

1 1Ham( , ) Ham( , ).FSP Pϖ ω^ � ^  



By the preceding Corollary  
1

1( (Ham( , ))) 2.# Pπ ϖ ≥^  

On the other hand,  
1

1(Ham( , )) / 2 .FSPπ ω^ � ] ]  

Thus, lower bound given in the Corollary is precisely the 
cardinal of the homotopy group. 
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IX. SCHEMATIC SUMMARY

π  discrete series representation of a linear semisimple 
group. 
 
(A) The differential representation 'π  in terms of 
quantization operators. 
(B) Expression of the infinitesimal character as a 
polynomial of quantization operators.  
(C) Four geometric descriptions of the invariant κ .  
(D) Lower bounds for the cardinal of 1(Ham(M))π . 
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