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1 Integrable 2-dimensional spinor models

The integrability of the 2-dimensional versions of the Nambu—Jona-Lasinio—
Vaks—Larkin (NJLVL), Gross—Neveu model (GN) and Zakharov and
Mikhailov — see Zakharov and Mikhailov (1981). NJLVL models are re-
lated to su(N) algebras, Gross—Neveu models — to sp(IN) and Zakharov—

Mikhailov (ZM) models — to so(N).
Lax representations of these models:

Ve = U, )P (E,n,A), v, = U(&n, )W (E,n,N),
U V
Uen.x) = & Vienn = 2ED,

where n =t+ x, £ =t — x and a is a real number.
We also impose the Zs-reduction:

Ul(z,t,\) = =Ul(x,t,\*), Viz, t,\) = =V (z,t, \).
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The compatibility condition of the above linear problems reads:
U,—Ve+[UV]=0,

which is equivalent to

1

9 Vla Ul (57 77)] = 0.
a

1
U1,n-|- [U1,V1(5>77)]:O> Vl,&‘ _%[

i) Nambu-Jona-Lasinio-Vaks-Larkin models. Here we choose g ~
su(N). Then ¥(&,n) and ¢(€,n) are elements of the group SU(NV)

and by definition (¢, n) = ¢1(&,n), ¢(£,n) = ¢T(£,m). Next we

choose J = diag (1,0,...,0) and as a result only the first columns

»D . p(D) and the first rows ¢, (1) enter into the systems. If we
introduce the notations:

ba&n) =00, val&n) = v,
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then the explicit form of the system is:

0ba _ i N~ o
oy~ 3o 2 VB9,
O _ i, N~
5 —%%;%w

The functional of the action is:
2

o N ) 0. |
Angivi :/ dedt |i) ( Z% + g gg ) ~ 9 > ($rda)
-0 a=1 a=1

ii) Gross-Nevew models. Here we choose g ~ sp(2N,R); then ¥ (&, n)
and ¢(&,n) are elements of the group & ~ SP(2N,R). Following
7] we use the standard definition of symplectic group elements:

b(E&n) =T ENT, ) =37 (T, T= (g —011).
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Then the corresponding Lie algebraic elements acquire the follow-
ing block-matrix structure:

e = (o _r )

where A, B, C' are arbitrary real N x N matrices. Next we choose
J— (8 130) . By =diag(1,0,...,0,0).

As a consequence again only the first columns ¢, ¢*) and the
first rows &1, (1) enter into the systems. If we introduce the
N-component complex vectors:

1 1
Gal&sn) = SO0 +10W ) Wal&m) = S + 00 )
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then the explicit form of the system is:

O _ Ly S (56— w30)
(977_aaﬁ:155 BYR />
Mo 0N e
9 ——%a ;:1(%% — Ppts)-
The functional of the action is:
A _ > d dt . a *a¢a *a¢a 1 ~ * * :
GN—/_OO T Z;(% o + ¥y, 9e ) 5 ;(wa%—%wa)

iii) Zakharov—Mikhailov models. Now we choose g ~ so(N,R); then
Y(&,n) and ¢(&,n) are elements of the group & ~ SO(N,R). Fol-
lowing [?] we use the standard definition of orthogonal group ele-

ments:

A

v(En) =vT(&n), S n) =T (€ n).
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Now we choose
J=E1Nn—EnN1,

where the N x N matrices Ey, are defined by (Ekp)nm = OknOpm.
As a consequence now the first and the last columns gb(}),gbw ),
D h(N) and the first and the last rows ¢, ¢V 1h(D) 4h(N) en-
ter into the systems. If we introduce the N-component complex
vectors:

Pa(&,n) = :

SO0 i), el = o+ i)

then the explicit form of the system becomes:

Obe 0
B = o 2. (#adavs — dadh)in),
/8:

S

0o 0w
i 8na == z:: VoVsds — Vas) 08,
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The functional of the action is:

AZM:/ dx dt (z

1
2a

N

L 000 L OUg
2 <¢“ on * Ve 0¢ )

a=1

1

VQ
#[M]=

(gbngﬁ - ¢Z%)(¢Z¢B - w;wa))> .
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2 Zos-Reductions of the spinor models

Apply the idea of the reduction group — Mikhailov (1980) and obtain
new types of spinor models generalizing the previous ones.
Start with the Lax representation:

\IJS — UR<£7777 A)\Ij(fanv >‘)7 \Ijn — VR(&U, A)‘I’(fﬂ?, )\)7

U, (€, CU,(&,n)C} Vi (€, CVi(&,m)C1
UR(&??,)\): ;\(EZZ)—'_ 61)\(—&177_)a ’ VR(g,U,A): )1\(—?-2)4_ el)\(i?zl)—a

where ¢ = £1, a # 1 is a real number and C' is an involutive automor-
phism of g. It satisfy also:

Y

UR(£7 1, )‘) — CUR(€7 1, 6)‘_1)0_17 VR(£7 1, )‘) — CVR(gv 7, 6)‘_1)0_17
The new Lax representation is:
oUr O0Vgr
—— — —— + |Ugr,Vr| =0
877 ag T [ R R] )

which is equivalent to

Ul,"? + [Ula VR(S? 7, CL)] — 07 Vl,g + [Vl, UR(f,n, —CL)] = 0.
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In the same way as above we get:

i) Zo-NJLVL models. Here & ~ SU(N) and the system takes the

form:
06 1.t
G+ 5000 9 + OO ) Em = 0
NoV R e 1 oot B
iGe + 5506 D)+ —=CdG CO)Em = 0.

where ZE — (wa,la SRR 7¢Q,N)T and 5: (¢O¢,17 SR gba,N)T-
For the automorphism C' of the SU(N) group we may have

a) Cn = diag (€1, €2,...,€N), €; = *1, b) Cy = ((1) C]\?_l> .

where C'y_1 belongs to the Weyl group of SU(N — 1) and is such
that C%,_, = 1. These two special choices of C' are such that

lime_ 100 Ur(€,m) = lime_s 100 CUR(E,0)C.
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ii) Z2-GN models. Here & ~ SP(2N,R). Two typical choices of C

are given by:
o Cl 0 I 0 02
) C—(o 01>’ b) C_<Cz o>’

where C? = C3 = 1.

Ob  i=f e o sy o A
o = 0 (L9 - @) - il (0 10d) - (G1a)).
L A 2i T U

96 = 20 (L0) - @10 + o 0d (01d) - (310

The corresponding action can be written as follows:

—,

. (7100 | 20U\ Lo sy ey a2
_ T2 T2 - t (T
Moo= [ dode (z (qs o+ 85) S CAROENCART)

— 00

- (Frad) - @re) ).

ca— ! +a

0-11



The second Zs-reduced GN-system is:

Od o o 9% R Y
2= LG (W09 - GLD) + e O (T Ci) + (51026 ))).
8?7;_7’_’ e g ™ 21 e T 7 g e

5 = 20 (@19 -GN + 0o (07 0od) + (3100 ).

These equations can be obtained from the action:

Avowy = [ do ( <¢* % | g1 f) o (@16 - @)

(G @),

ca~ ! +a

iii) Z2-ZM models. Here  ~ SO(N,R). Again we used N-component
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vectors to cast the Zs-reduced ZM systems in the form:

(9 ' rid -, -, = - ) - - - -
LB - 3G D) + e (51O - 85

O i (=i oop m op 2 A o
an—a(w (07.6) =0 1.9)) + — 0 (§"(57CF) - i(§1C9))

where the involutive automorphism C' can be chosen as one of the
type:

a) C = dlag (61,62, .. .,62,61), €j = :|:17 b) C/ = (

with C% = 1. For these choices of C' we have lim¢_, 1o, Ur(£,n) =
limg 100 CUR(E,1)C.
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The action for the reduced ZM models is provided by:

AZ%ZM:/ dx dt ( (w :’; w;g)

+= (@1,6)@0) - (19T 1.9)
b (108 )@ Cd) — (§Teh) i e >)>’

ca~ ! +a

3 RHP with canonical normalization

ET(Z,t,0) = € (3, )G(Z,t,\), A eR, Jim £(7,1,A) = 1,
— 00
EX (T, \) €GB
Consider particular type of dependence G(Z,t, \):

.0G ) . B 0G ) . B
Z@ars — N [Js, G(Z,t, \)] = 0, i, NK,G(Z,t,\)] = 0.
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where J; € h C g.
The canonical normalization of the RHP:

ET LN =exp QT 1), Q@E LA =) Qu(@ A"
k=1

where all Qi (Z,t) € g. However,
T (T, 6, N) = EF (T, 8, \)JLEE (2,8, N), K(Z,6,\) = 5 (T, 6, NV KET (T, ¢, \),

belong to the algebra g for any J and K from g. If in addition K also
belongs to the Cartan subalgebra [, then

(T (Z,t, M), K(Z,t,\)] = 0.

Z.akharov-Shabat theorem

Theorem 1. Let £F(x,t, \) be solutions to the RHP whose sewing func-
tion depends on the auxiliary variables & and t as above. Then £*(x,t, \)
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are fundamental solutions of the following set of differential operators:

8£i

L&F = o (Tt NES(Z t,N) — N[, €5 (Z,t,0)] = 0,
+ OE* + (= k + (= _
Proof. Introduce the functions:
+ (= afi S+ ket (= St
GE(E,1,0) = iS5 (7,1, 0) + NEE(7, 1, 013,10,
+ (= afi S+ ket (= S+ =
g (2,8, A) = i— —E7(2, 1, A) + ATET(Z, 1, M KET (T, 1, A),

and prove that
gi (T, 6, N) = g5 (Z,t,7), g (T, t,0) =g~ (4,1, ),

which means that these functions are analytic functions of A in the whole
complex A-plane. Next we find that:

)\lim gr(Z,t, \) = AFJ,, lim g7 (Z,t,\) = \'K.
— 00

A— 00
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and make use of Liouville theorem to get
g;_(fata)\):gs_( L, 7 _)‘kJ _ZUSZ )\k l
g (Z,t,0) =g~ (&1, \) = \*K — sz AR

We shall see below that the coefficients U, (%,t) and Vi(Z,t) can be
expressed in terms of the asymptotic coefficients (). []

Lemma 1. The set of operators Ly and M commute, i.e. the following
set of equations hold:

0U 8U . S
Zaﬂﬂj 8908 + [U8($7ta )‘) - )‘kjsv Uj($7t7 )‘) — )‘k‘]j] =0,
U, oV ) ) 3 .
_ s\ 4y by o S y Uy o K| =0.
5 zaxs—i—[U (Z,t, ) = NI, V(Z,t,\) = N*K] =0
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where

k
=) Ug(@ N V(@ LA =) VI(E DA

[=1 [=0

Proof. The set of the operators Ly and M have a common FAS, i.e. they
all must commute.

[]

4 Jets of order k

Consider the jets of order k of J(x,\) and K(x, \):

To(@,6.0) = (W@ LNIEE@ 1 N) = AT~ Ua(@,1.0),

K(Z,t,)\) = (Akgi(f, N KEE (7 8, )\)) — \K V(1))
_|_
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Express Us(z) € g in terms of Q(x):
Ts(Z, 8, 0) = J, +Z—adQJS, K(Z, K+Z—ad

and therefore for Us,; we get:

1
Us1 (%, t) = —ad g, Js, Usio(%,t) = —ad g, Js — sad o, s

1 1
Usia(#,t) = —ad g, s — 5 (ad g,ad @, +ad g,adg,) J - gadS s
B 1
Usi(%,1) = —ad g, Js — 5 Y adg,adq,Js
s+p=k
1 1
8 Z ad Qsad Qpad QrJS — k'ad Qljsa
s+p+r==k

and similar expressions for V(&) with J, replaced by K.
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5 Reductions of polynomial bundles

a) ATzt AN)A=E(21,)),  AQM(z,t,eX)A = —Q(z,t, N),
b) Be Y (x,t,eN)B = £ (x,t,)\),  BQ*(x,t,eN")B = Q(z,t,\),
c) C&PT(a,t,-NC =€ (v,t,)), CQN(x,t,-N)C = —Q(z,t,\),

where €2 = 1 and A, B and C are elements of the group & such that
A? = B? = C? = 1. As for the Zy-reductions we may have:

DE* (z,t,wA)D = €5 (x,t, N), DQ(z,t,wA\)D = Q(x,t, ),

where w® =1 and DV = 1.
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6 On N-wave equations (kK = 1) in 2 and
more dimensions

Lax representation involves two Lax operators linear in A:

165 =% 4 [1,Q(a, 0] (@..0) — AL EF(E 0] = 0.
MeE =% 4 (K, QU ) (@.4.0) — NI €5 (7,0, 1] = 0.

The corresponding equations take the form:

052|152 | - 1QLIK Qo) =0

ot Ox

O s J = diag (a1, as, a
Q(:C,t) — —Vq O Uo : K_d g(b17b27b 3),
—U3 —U2 0 _ la’g( 15 Y2, 3)7
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Then the 3-wave equations take the form:

where

% _ ai — ao 811,1

(9t bl — b2 (9:13
6’u2 ao — Aas 6u2
= * —(
ot bg — b3 ox * et s ’
8u3 a1 — as 8u3

W_bl—bg ox

+ /{€1€Q’LLS’LL3 — O,

* X
+ Keaujus = 0,

K = al(bg — bg) — az(bl — bg) + ag(bl — bg)

For 3-dimensional space-time we consider () as above, but now let
u; and v; be functions of 1 = x, x2 = y and ¢t. Let also J; = J and

Jo = I = diag(cy,ca.c3). Now the corresponding solution of the RHP
¢+ (x,y,t, \) will be FAS not only of L and M above, but also of

=+ :E + (7 _ + (7 —
=1 Y +[I,Q($,t)]€ (ajata)‘) )\[I,f (LU,t,)\)]—O,
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and all these three operators will mutually commute, i.e. along with
L, M] = 0 we will have also [L,P] = 0 and [P,M] = 0. As a result
Q(z,y,t) will satisfy two more 3-wave NLEE

0u1 aip — a9 8u1 al — ao 0u1
23— — - Fug = 0,
875 bl — b2 8:1: C1 — C2 &y * (lil * 52)€1€2U2’U}3

8U2 a; — as 8u2 a1 — as 8u2
2= — - *ug = 0,
ot b1 — b3 ox C1 — C3 (9y * (lil * %2)61/&1“3

2%_ ag—a38u3 B ag—a38u3
ot b2 — b3 ox Co — C3 (93/

+ (k1 + K2)eaujus = 0.

K1 = a,l(bg — b3) — &Q(bl — bg) + ag(bl — bg),
ko = a1(ce —c3) —as(c1 — c3) + as(cy — c2).

For N-wave equations related to Lie algebras g of higher rank r we
can add up to r auxiliary variables:

P22 S (ady ady) 0% —i'Y ady) [[.Q). [ QD] = 0
s=1 s

s=1
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where () is an n X n off-diagonal matrix depending on r 4+ 1 variables.
We remind that if J = diag (a1,...,a,) then

1
a; — A

(ad ;Q)jx = ([J, Q) jk = (a; — ak)Qjik, (ad ;'Q)jk = Qjk,

and similarly for the other J.

7 New N-wave equations (k = 2) in 2 and
more dimensions

Let g = sl(3) and

0 w3 wus di1 W1 wWs
Ql(fﬂf): —v1 0 wug ; QQ(fat): —Z1 ({22 W2 ,
—v3 —vg 0 —23 —22 (33
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Fix up k£ = 2. Then the Lax pair becomes

+
LEF = i% + Uz, t, NS (2, t, \) — N2 J, 65 (2, t, \)] = 0,
L 0¢F n 2 ot _
M :ZW—FV(QZ,@)\)&. (ZC,t,)\)—)\ K,f (:L’,t,)\)]—(),

where

U = Uy + AT, = ([J, Q2(0) — L(17.Q1). Q1(:v)]) FALQ1

V=V, + AV = ([K, Q2(2)] — =[[K, Q1] Ql(w)]> + ALK, Q1]

Impose a Zs-reduction of type a) with A = diag(1,¢,1), €2 = 1. Thus
21 and ()2 get reduced into:

0 u; O 0 0 ws
Qi=|eu; 0 ux |, Qo = 0O 0 O :
0 eus 0 ws 0 0
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New type of integrable 3-wave equations:

. ou . ou . k(ar — a

Z(CLl — CLZ)@—; — ’L(bl — bg)a—; + ERUSUS + € (211_ a;)) ’U,1|U2|2 — 0,
, ou , ou . k(ae —a

i(ag — ag)(?—t2 — i(bg — b?’)@—; + ekujus — € ((af_ a33)) up [Pus = 0,
, ous . ous ik O(ujus)

a1 = ag)ﬁ (b - bg)% B a1 —as Ox

ar —a as — Qa
“”"( —fuf* + = ?’m\z) uruz + e (|ua* — fual?) = 0,
a1 — as a; — as
where:
2&2 — a1 — as
2(0,1 — CL3)

Uz = W3 + ULU.

The diagonal terms in the Lax representation are A-independent.
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Two of them read:

. O|u 2 ) O|u 2 * * %

i(a1 — az) |8i| — 1(by — ba) |8;:‘ — er(uruguy — ujusus) = 0,
O|u 2 ) O|u 2 * * ok

i(az — a3) |3§| — 1(by — b3) |(9:12:‘ — er(uruguy — ujusug) = 0,

These relations are satisfied identically as a consequence of the NLEE.
Let the sewing function G of the RHP depends on 3 variables: t,

r1 =z and xo =y with J; = J and J, = I = diag (¢, co,c3). For k =2
we obtain: L, M and

+
PEs = i 4 Wyt V€ 0. 8.0) = VL €4 2,0, 0)] =,

W =Wy 4+ AW,

_ ([[, Oo(.y.1)] — %[[I,Ql],&(x,y,t)]) AL, Qi (2,9, 1)),
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commuting identically with respect to A. It is obvious that [L, P] = 0 if

Ouq Ouq —
i(ar — aQ)a—“t —i(ey — c2)a—“y + erqulug + Eﬂéin_ aj)Q)ul|u2|2 —0,
0 Oug —
i(ag — ag)% —i(cg — 03)8—2 + €rouiUuz — e/{?é?_ aj§) lup [Pus = 0,
Ous Ous ike  O(uiusg)
ilar = as) ot iler = cs) 0y a1 —asz Oy
a a
+ €R9 ( L ‘ 1‘2 2 "UQ’ ) ui1Uo + 6/432U3(|U1|2 — ‘UQ‘Q) = O,
a; — as a1 — as
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Oup usus g [ug|?

9; 7 _ Vi —0
7 oy z(v(l) Jui + €(Kk1 + K2) (CL1 o + (a1 — a3) :
Ouy uius s |ug|?

9; 72 _ v _ —0
Ly i(Tigy - V)ug + €(k1 + K2) <a,1 —as  (ay —a3) :
Ous - (R - V) (uruz) (k1 + K2) 2 2

9, 713 _ V) s — _

Ly i(Vz) - V)uz — i (01— a3)? Li—— (Jur]® — Juz|”)us
— e(rn + 522) ((al — a)|ur]® + (ag — a3)\u2!2) uiuz = 0.
(a1 —a3)

Here V = (9,,0,)", the characteristic velocities vy, § = 1,2,3 and i
are two-component vectors given by:

S B 1 (b
W= g —ay \er—ea )7 D= 4y —az \ca—c3 )’

S 1 b1 — b3 - K1
U(S) — a4 — c1— ’ R = K ’
1 as 1 3 2

and k1 = K.
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Conclusions and open questions

We constructed new integrable spinor models and new integrable
3- and N-wave equations.

These new NLEE must be Hamiltonian. The Poisson brackets

for polynomial bundles — see Kulish, Reyman and Semenov-Tyan-
Shanskii (1981-1983);

The method allows one also to apply Zakharov-Shabat dressing
method for constructing their explicit (/N-soliton) solutions — T.

Valchev.

This approach improves Gel’fand-Dickey approach.
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