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e Parametric resonance
— 1n mechanics: systems with external sources of energy
(e.g., the pendulum with oscillating pivot point, periodically varying stiffness, mass, or load),
— an fluid or plasma mechanics: frequency modulation or density fluctuations,
— an mathematical biology: periodic environmental changes.
Hill equation (analysis of the orbit of the Moon — lunar stability problem, modelling of a quadrupole mass spectrometer,
as the 1D Schrédinger equation of an electron in a crystal, etc.):
i+ (w§+p(t) z =0, (1)
where wy is a constant, and p(t) is a w-periodic function with zero average.
More generally:
i+ k& + (wg + p(t)) F(z) =0, (2)
where k > 0 is the damping coefficient, and F(z) = 2 + bz? + ca + - -.
Mathieu equation (stability of railroad rails as trains drive over them, seasonally forced population dynamics,
the Floquet theory of the stability of limit cycles, etc.):

4+ (a—2qcos2t)z =0, (3)

where a is a real constant, and ¢ can be complex.
Lamé equation (when we replace circular functions by elliptic ones):

i+ (A+ Bp(t) v =0, @)
where A, B are some constants, and p(t) is the Weierstrass elliptic function. Another form:
i+ (A+ Bsn’t)z =0, (5)

where sn(t) is the Jacobi elliptic function of the first kind.



e One-dimensional wave equation

Let us consider the following one-dimensional wave equation:

w'(z) + ¢ (2)w(@) =0,  g(z) =

n(z), (6)

which describes the harmonic waves ~ exp(—iwt) propagating in a nonuniform dielectric medium with gradually varying
dielectric refraction index n(x); ¢ is the speed of light in vacuum and / denotes the differentiation with respect to x.
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e Floquet theorem

According to the Floquet theorem, for any periodic refraction index n(z) = n(x + A) (or equivalently for any periodic
coefficient g(z) = g(z + \)) the one-dimensional wave equation (6) has a quasi-periodic solution

w(z) = w(z) exp(+pz), (7)

where w(x) is a periodic function and the characteristic exponent p can be either (i) real or (i7) purely imaginary. The
former case corresponds to a parametric (anti-)resonance in the stop bands of the periodic structure, and the latter one to
a periodic modulation of the carrier travelling wave.

e Periodic part of the solution
The one-dimensional wave equation for w(x) has the following form:

" (z) £ 2pud' (z) + [¢*(z) + p?] ©(z) = 0. (8)



e Admittance function
If we introduce an admittance function
w' ()
y(r) = ————
) = @@
then it is easy to observe that Eq. (6) can be equivalently rewritten as follows:
q(2)y' (z) + ¢ (z)y(z) + ¢*(z) [1 + y*(z)] =0,

&

y'(x)dx ya)g(z)de
/q(x)[1+y2(fc)] +/q () [0 p2(2) [ .

¢ Harmonic oscillator

If g(x) = qo is a constant, then Eq. (11) reads

1 dy
1+ y?

= Tg — L.

The integral can be easily integrated with the substitution y = ctg 1, dy = —dy/sin?+, 1 + y* = 1/sin*¢). Then

¢:Ctg_1y=¢o+QO($—$o)ZCJO(I—%), To=Tg— —,

and
dsin qo (x — 7o)

sin go (¢ — Zo)

w(z) = woexp [qo/ctg % (w—%o)dx} = wp exp U

S w(z) = wpexp [ / y(m)q(m)dm} |

} = wosin gy (z — Zo) .

(10)

(11)

(13)

(14)



e (i) real characteristic exponent
A wide class of analytical solutions can be found by the method of phase parameter:
y(z) = ctg ().
Then Eq. (10) reads

R OONEIN \
sin? ¢ (z) Fat@cEl )+sin22/1(:c)

: q(z)

If there exists the inversion x = X (¢), then we can write w(x), y(x), and ¢(z) as functions of ¥, i.e.,

wX@)] =W(@), yX@)]=Y@)=ctgd, ¢[X¥)]=Q)
Then Egs. (9) and (11) can be rewritten as follows:

ie.,

sin 2¢(z) = q(x).

) = R [— [ow coswdw] |

/ di _1/G(¢)sin2¢d¢
expG(v) 2 exp G(v) ’

X)) = xo—i‘l
qo0

where we made a substitution Q(¢)) = go exp G(¢); here and below dots denote the differentiation with respect to .

(19)

(20)



¢ Periodic refraction index

In particular, for any periodic refraction index n(z) = n(x + \) defined implicitly by a Fourier series

G() =aog+ Z (@2, cOs 2map + by, sin 2map) |

m=1
we obtain a Floquet solution
w(x) = () exp(—pia),
where w(z) is a periodic function, i.e.,
w(x +2X) = w(x),

and the characteristic exponent 1 = v/ is given by the explicit formulae for the period A:

A= 2 [ exp [—Glw)] sin? gy,

q0 Jo

and attenuation per period v:

UA— /O7T G () sin 2¢dy.

(24)

(25)

These analytical relations, giving the very simple description of the wave field attenuation in a periodic structure, are
useful for the optimal design of multilayer mirrors and Bragg fiber claddings. However, from the theoretical point of view
this solution remains incomplete until a similar parametric representation is found for propagating waves in transmission

bands of a periodic medium.



e (i7) complex characteristic exponent

For a complex wave also is possible to define a phase parameter v (x), which obviously must be a homogeneous function

of w(x) and w'(x).
Let us observe that
y(z)+4 ctgep+14i  cosy +isingy

y(z) —1 ctgy—4i cosy —ising
then Eq. (15) can be equivalently rewritten as follows:

= exp (2iv)),

1y ll w'(z) + ig(x)w(x)

pE) Scte ule) = o oS 2 e T

Let us define the quasi-phase parameter ¥(x) of a complex wave function w(zx) as follows:

)
= %ln w'(x) + 19 .Q( T)w ($>) N / {q(x) ) ¢ (x) Re [y(w)]2 } o

w(z) — ig(z)w*(z q(z) ly(x) + il

The complex-valued admittance y(z) as a function of 1 reads

and then Eq. (1) can be rewritten as a pair of nonlinear differential equations

1 (1 GReY> v GImY[i(¥?— 1) —2v]

Fa b G ReY _
Q Y + i/ Y + i|?

- (1+Y?).

(26)

(28)

(29)

(30)



Proof. The second part of Eq. (28) can be obtained from the first one by the direct calculation of the integral representation
of the logarithm, i.e.,

1 / g 1 " 0 / /
Re —./M —Re; [ + U (31)
) w’' + tqu 7 w' + tqu
and now, using Eq. (6) and the facts that Re (iz) = —Im(z), Im (iz) = Re(z), we finally obtain that Eq. (31) can be
rewritten as follows: NS N\ ) )
N\ [/ ig (w +zq@) + igq wde N / <q+ 7 Re [_D B (32)
w' + iqu q y(x) + 4
Let us also note that
ly(2) +i* = y(2)* + 2Im [y(2)] + 1. (33)
As for the first of Eqgs. (30), it follows directly from Eq. (28), i.e.,
d 1 G(¢) RelY
dz ~ X(¢) X () 1Y () +
And the second of Egs. (30) is obtained inserting w”(z) = [¢(z)w(z)h(z)]" into Eq. (6), then
Y +YG
w” [X()] = QW | == 4 v?) = —Q*W = —g?w, (35)
QX
what provides us also with the compatibility condition (cf. Eq. (10))
Y+YG+ (1+Y?)QX =0 (36)

imposing constraints on choosing the complex admittance Y (¢)). O



e R, Y-variables

For the sake of convenience, let us denote Y = Rexp(i))) and separate real and imaginary parts of the second of Egs.
(30), then as a result we obtain the following pair of nonlinear differential equations:

R = —GSRY)[2R+ (1+R)sinY] - (1+R?) cosY = ~GR+ (R*+1) [GC(R,¥) — 1] cosV,
y = R2_1[G’C(R,y)—1]siny,
R
where >
S(R,Y) = R sin) C(R,Y) Rcos)y

14+ R242Rsin)’

Let us also note that in new variables we have that

and

Re Y() = R(¢) cos Y(¥),

V(%) +4l* = 1+ R*(y)

T 1+ R2+2RsinY

Im Y (¢) = R(¢) sin V(<)

+ 2R () sin Y(¢).

Then the functions S (R,Y) and C (R,)) can be also defined as follows:

with the compatibility condition

_ ImY(y)
S = T+

S*(R,Y)+C*(R,D)

_ ReY(®)
CEI T

_ Y@)P
O

(37)

(38)

(39)



e Another form of equations

Let us note that Eqs. (37) and (38) can be equivalently rewritten as follows:

% = [GC(R,)))—l} cos Y,
szi}l = [GC(R,y)—@ sin .

e Solution

In a general complex case Eqgs. (37) and (38) can be integrated with respect to Y(v):

14 R ) G(y)dy
e a“““{WQWXp [‘2/ m”

Proof. Let us denote

Rsin)

R2+1°

Then using Eqgs. (37) and (38) we can calculate its derivative with respect to v:

J(R,Y) =

: C I-R)RsinY + (1 +RHRYcosy R2-1 .
j(Ray)_ (R2+1)2 _R2+1

We see that Eq. (48) can be easily integrated.

GJ (R,)).

(46)

(47)



e Second-order nonlinear differential equation

For the function C(¢) = C[R(¢), Y(¢)] we obtain a nice nonlinear second-order differential equation

¢w) +4cw) = T2 ) +ac2w) -1 (49)

with the eigenfrequency 2 and modulation determined by the variable refraction index
n(x) = noexp [G [ (2)]], (50)
where ny = (¢/w) qo.
e Parametric solutions

Therefore, there are two ways of constructing sought parametric solutions:

(7) to define G(v) and then solve Eq. (49) with respect to C(1) or
17) to define C(v)) and then find G(v) by integration:
(i) ( ©) by integ

P) +4C(¥)
/02 ) + 4C2(xp) — 1d¢' &

Remark: If we take that C(¢)) = 0, then the function C(1) is constant and from Eq. (51) we obtain that

8C

G = g (¥ — %) (52)



e Relations

The variables R and Y can be expressed through C and its first derivative C as follows:

A 2
2
. ) 12+ (1+€)
gy == RI= (53)
L 1c2+ (1-¢)
Therefore, the complex admittance Y = R exp(i))) can be expressed through C and its first derivative C as follows:
- 4c+z'<1—4c2—c'2)
Y:(1+R2) Rcosy+i7251ny N : (54)
14 R? 1+ R?

AC? + (1 —0)2

If the functions Q(¢) and/or C(¢)) are given, then the following expressions for X(¢) and the complex-valued wave
function W () can be written:

xw) = [(1-¢wew) 5o (59)
(1-6c) [1c+i(1-4c2- )]

4C2 + (1 —0)2

W) = woexp [ [ (1-cwew) Yw)dw] —wew | w|. ()



¢ Partial solutions

Let us note that for any function G(w) there are two particular solutions of Eq. (49), namely,

Ci(¥) = asin By,  Ca(yh) = acos Sy, (57)
where |
o= :I:E, ok — =), (58)

Proof. 1t is easy to check that the first particular solution C;(¢) is the solution of Eq. (49) by direct calculations of the
following terms:

Ci() +4Ci(p) = (4— ) asinfy, (59)
CI(Y) +4Ci(¥) —1 = (4-p%) a’sin? By + (a®B* — 1) . (60)

Therefore, if we suppose that o and g fulfil the following conditions:
o?f% —1=0, 4—p82=0, (61)

then for any function G(1) the left- and right-hand sides of Eq. (49) are equal to zero separately.
The same is true for the second particular solution Co(1)). O



¢ Real-valued admittance

For the partial solutions of Eq. (49), the admittance Y (¢) is purely real, i.e.,

N QANLT - Ctg(¢_¢0)7
Y(W—{ “ =7 —te R

therefore, for any given function G(v) (equivalently Q(¢))) we obtain the following expressions for X (t):

dy

X(w) = [ [17Gw)sinG =) cos 6 = )] g

and the complex-valued wave function W (v):

where

(63)



e Special solutions

Though it is hardly possible to find the exact solution of Eq. (49) in a general case, the above analysis clarifies the
nature of quasi-periodic Bloch waves in the transmission band and allows one to construct a wide class of special analytical
solutions. A continual set of integrable wave equations can be obtained if we choose

_dnM(C) _ 1 dM(C)

G [(C)] £ MCE (66)
where M(C) is an arbitrary real-valued function. In this case Eq. (49) has an energy integral
C?=1-4C*+ M(C) (67)
and a periodic solution C(v¢)) = C(¢ + 7) given by the following expressions:
w:i/ i L N 4G , (68)
V/1—4C2+ M(C) c. /1-4C2+ M(C)

where the turning points C. are the roots of the radical.
Proof. Let us notice that using Eq. (66) we can calculate the complete derivative of M [C(¢))] with respect to 1 as follows:
M(@C) 1 dM(C)dC

M(C)  M(C) dC dy L& )
Then rewriting Eq. (49) in the form
20 ((5 + 40) d \ ) d
o= d¢n[c+ C 2 M) (70)

and integrating Eq. (70) we obtain Eq. (67). O



e General reasoning

Eq. (49) can be written in the following form:
¢=f{gcan (71)

where the direct dependence on % is realized only through the function G(w) Let us suppose that in some way we have
rewritten it as a function of C, i.e., G(C) = G'[¢(C)]. Then in Eq. (71) the direct dependence on % is missing, and therefore,

we can take C as an independent variable. Then we obtain that C = y(C), C = y(C)y'(C), and Eq. (71) reads
2y(C)y'(C) — G(C)y*(C) = G(C) (4c* — 1) —8cC, (72)

where / denotes the derivative with respect to C. Let us note that

2 / /
Y 1 / M (C) 2
= 2y’ — 73
(3fm) 3@ [~ 3] &
and we see that to integrate Eq. (72) it is enough to suppose that the connection between the functions G(C) and M (C) is
given by Eq. (66). Then we obtain the following first-order differential equation:

€2 =2 = M(C) { 41\6422—(_0)1 dM(C) — % dC] . (74)

If we compare Eq. (74) with Eq. (67), we obtain the compatibility condition

AP -1 (4?1 8C
e e O = | e (75)




e M(C) = const — sin
If we suppose that the function M (C) is constant, i.e.,
M(C) =c, e = 1, @4,

then G = 0 and we obtain that

S dc SN dy . N2€
& i/m‘%/ﬂ’ & Vi
cw) =+ 2w —v), o =9(0)

e M(C) =c+ 8eC = sin

If we suppose that
M(C)=c+8C, c>-1—4e®  c#0,

where ¢ and e are constants, then

a dc aaat dy (G =)
90 = + [ = Ve S e
2
i = o e MR YN

Z



o M(C) = c+ 8eC — d*C? = sin
If we suppose that

16€2

NN 22
M(C) = c+ 8eC — d*C?, C>_1_d2—|—4’

c#0,

where ¢, e, and d are constants, then

2 B
. i/ dc :il/ dy yo_ (@roC—te
V14 c+8eC — (d* +4)C? 2

W) = - 1+ et/ T+ (@ +4) + T6sin [VE+ (0~ o)}

o M(C) =c+8eC + (k* +4)C? = sh
If we suppose that

16¢2
MC)=c+8eC+ (K+4)C°  c¢> —1+k—f, k>0, c#0,
where ¢, e, and k are constants, then
dc N k2C + 4e

1 dy
o = = 4 [, u- .
v(e) V1 + ¢+ 8eC + k2C2 2/ /1+92 § V(1 +c)k? — 16¢2

Cy) = %{—@ + /(1 +c)k2 — 16e2sh k (¢p — wo)} :

V1—4? V(A +c)(d+4) + 162

(86)

(87)



e M(C) = (4a® — 1) 4 b*C* = sn

Let us also consider an instructive example of modulated waves in a periodic dielectric medium, determined by the

following potential:
M(C) = (4a® — 1) +b°C*, Gl = (0] ab < 1, 4a® # 1. (88)

Then we obtain that

< dc AV dc
C)=1=x =p£ - ) 89
N /0 Vda? — 4C? + p*C* & b/o V(C2 —C?)(C2 —C?) (89)
where the roots of the radical are given as follows:
2
= (1 4V a2b2) . (90)

If we take that C, > C_ > C > 0 (the roots C are real for ab < 1; additionally the condition C; > C_ imposes ab # 1),
then the auxiliary function C(%)) is expressed through the Jacobi elliptic functions of the first kind:

C(¢y) = £ay/1+p?sn lz(ﬁ—\/%ﬁg),pl , (91)

where

@ V1—V1I—a22 1-—+1- a2 /5] P 2
SO - - 1 2R S 1 — TN 2K2 — T N 2
¢, T i viion RV TP ab\/ 2 G SRS

a



e Complex-valued wave function

For any given function M [C(¢)] the complex-valued wave function W (1)) can be rewritten as follows:

W = wgexp

) / 4C —iM (M —CM")dC
4C2+ (1FVI—4CT+ M)" MV1—4C° + M

In particular, for the complex increment we obtain that
W(w+7)}_2 “ 24 M {40 } (M —CM")dC
W) | “Je M?+16C? VI—4CC+ M

X—i—in:ln{

o Even functions M(C)

Let us take an arbitrary even function M (C), then the function

/G N /M \/1—4CZ+M(C)

will be periodic. Moreover, for any even function M (C) we have that
“ 24 M { _CM’} Acdc A
o M?+16C? M JJ1i-4C2+M
which means that |I¥ ()| is periodic, while the phase advance per period 7, i.e.,
“ 24 M (CM' —M)dC
=4 Mrri6C i —dCr

determines the modulation period 7' = (27/n) 7 of the quasi-periodic solution W (¢) predicted by the Floquets theory.

X =2




Thank you for your attention!




