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Our aim is to investigate narrow-band and broad-band
laser pulses with femto- and attosecond duration in linear

and nonlinear regime.



With the progress of laser innovations it is very important to study the localized waves,
especially pulses which admit few cycles under envelope only and pulses in half-cycle regime.

One important experimental result is that even in femtosecond region the waist of no
modulated initially laser pulse continue to satisfy the Fresnel’s low of diffraction. The
parabolic diffraction equation governing Fresnel’s evolution of a monochromatic wave in
continuous regime (CW regime) is suggested for firs time from Leontovich and Fock
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The equation admits solutions of the kind of fundamental Gaussian mode, higher order
modes such as Laplace-Gauss, Helmholtz-Gauss and Bessel-Gauss beams.

From other hand the optics of laser pulses, especially in the femtosecond (fs) region operates
with strongly polychromatic waves — narrow-band and broad-band pulses. Additional
possibility appear to perform a fs pulse to admits approximately equal size in X, y, z directions
— Light Bullet — or relatively large transverse and small longitudinal size — Light Disk.



Our work is devoted to obtaining and investigating of
analytical solutions of the wave equation governing the
evolution of ultra-short laser pulses in air and nonlinear
vacuum.



LINEAR REGIME OF OPTICAL PULSES

» BASIC EQUATIONS

The linear Diffraction - Dispersion Equation (DDE) governing the propagation of laser
pulses in an approximation up to second order of dispersion for the amplitude function
V = WV(x,yzt) of the electrical field is
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where 8 = k'k,? is a number counting the influence of the second order of dispersion, k" is the
group velocity dispersion, k, is main wave number and v is the group velocity.

In dispersionless media it is obtained also the following Diffraction Equation (DE) for the
amplitude function 4 = A(x,y,z,?)
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In air 8 ~ 2.1x10”~ 0, and hence DDE is equal to DE, and at hundred diffraction lengths

appear only diffraction problems. This means that we can use an approximation § =~ () and
investigate DE only on these distances.



We note that a simple Courant-Hilbert ansatz

E(x,y,z,t) = A(x,y,z,t)expliko (z— vt)J

applied to the wave equation
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generates the same amplitude equation DE
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* The 1nitial problem for a parabolic type equation is correctly posed, while the initial
problem for a hyperbolic type equation is problematical ones.

Hence, a solution of the wave equation can be obtained solving the amplitude equation DE and
multiplying it with the main phase.



» FOURIER TRANSFORM

The equations DDE and DE are solved by applying the spatial Fourier transform to the
components of the amplitude functions 4 and V. The fundamental solutions of the Fourier
images J/ and 4 in (k. k, k, t) space are correspondingly

V

Pk, k, k.,0)=V(k, k,k..0) exp{i (ko £ k2 +(B+1)k2 + K7 + k2 2k k, ))t}

£ +1

and

Ak, k, k. ) = Ak, K, k.,0) exp{iv(ko e i k2 (k& ] ) z}.

When B ~ 0 the fundamental solutions are equal. Therefore we will investigate only the second
one.



The exact solution of DE can be obtained by applying the backward Fourier transform

A= F{/](kx,ky,kz 0) exp{iv(ko + i+ + (e ke, f j zH

or in details

A= (2;)3 [o i i Ak K, k.,0) exp{iv(ko - \/kj k2 + (k. —k, ] j t}x

expl-i(xk, + yk, +zk. ) } dk dk dk.

Substituting k, —k, = k, in the latter integral the backward Fourier transform takes the form

1 00 00 00

o] expl{—ik,(z —vt)} j j j Ak, k, k. +kq,0) exp{i ivt\/kf + k2 +k? t}x

—0000 00

A=

exp {— i(xkx + yk, + zk, ) }dkxdkydléz.



» EXACT SOLUTIONS

I. Gaussian light bullet

An analytical solution of DE is obtained for first time for initial Gaussian light bullet

A(x,y,z,0) = exp{— (xz +y*+z2° )/ 27, }

In this case the 3D backward Fourier transform becomes
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A= (2;)3 exp{— koz’”o —ik,(z - vt)}
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which in spherical coordinates can be presented in the following way

2.2 0 022
=t exp{— koz’”o —ik,(z - vt)}é '[ k. exp{— krzro }exp {i ivik, }sin {ﬁgr }dl:rr :
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where 7 = \/x2 +y* + (z—irozko )2 and f, = \/kj +k2+ k2.
The corresponding exact solution is

2.2

A(x,y,z,t) = iA exp{— oo _ ik, (z — vt)} X
2r 2
{i(vt + l?)exp{— % (vt + ,?)2 }erfc{ «/%ro (vt + f)}

i ,a)exp{_ - )}f{ﬁ (i f)}}.
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Narrow-band pulses — Fresnel’s diffraction
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Broad-band pulse — semi-spherical diffraction
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Multiplying A(x,y,z,t) with the main phase we find an analytical solution of the wave equation

. 2.2
E(x,y,z,t) = éexp{— °2r0 jx

27,

{l-(vw)exp{_lz(vw)z},ﬁ{ ﬁ (mf)}
i —f)exp{— o _f)ﬂerf{ ﬁ (w_f)}.

e E(x,y,z,O): exp(ikoz)[— (x2 +y°+ zz)/ 2r02]

® We can observe a translation of the solution in z direction — due to the term
exp(ikyz)

® Not stable with time — the amplitude function decreases and the energy distributes

over whole space
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Fresnel’s type of diffraction as exact solution of the wave equation
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Typical Fresnel diffraction in air of 100 fs pulse on A=800 nm; Ak<<k,
Solution by solving numerically the fundamental solution of AE

t,=100 fs; z=30pm; r,(x,y)=60 pm ; 37.5 cycles under envelope;

Side (z, y) projection:

z=0 7=7 difl/ 2 7=7Z,.
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Nonparaxial diffraction of few-cycle optical pulses; Parabolic profile on several
diffraction distances!!! Ak~k,

T,~10 fs; 3 cycle under envelope; Laboratory frame

z=0 z=zdiff z=2zdiff z=3zdiff

t,=2.6606 fs; 1 cycle under envelope; Galilean frame
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Why this happens?
DDE In local time - Fundamental
solution

Z'=zit'=t—z/v
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1. Narrow band pulses (50-100 fs) Akz — Aw/ V,, << ko , Ao

Vgr

Using the low order of the Taylor expands the kernel is transformed to:

Ve — —
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A(kx,ky,Aa),é/):A(kx,ky,Aa),O)XeXp <l 2k -
0

Typical spatio temporal paraxial optics.
Side (x,t) projection




Vgr

A=Ak, k, k_,0)exp i [ko —MJi

2. Large band pulses (3-30 fs) when

and
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Parabolic profile of diffraction of attosecond pulses

(G. Mourou, Presentation in Bulgarian Academy of Sciences, 2008)
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II. Spherically symmetric finite energy solutions of the wave equation

1. The Transition theorem  Fg(x)exp(icx)|=Flg|k, +a)

Our main purpose is to find exact solutions of the DE and wave equations. Let us consider
again the solution of the amplitude function 4 presented as integral in 3D Fourier space

A= (271[)3 expl—iky(z—ve)} [ [ [ Ak, .k, . k. +k,.,0) exp{i ivt\/kf + k2 4 k? t}x

exp {— i(xkx + yk, + 2k, ) }dkxdkydléz.

All terms except the Fourier image of the initial conditions A(k k, k. +k0,0) depend on the
translated wave number k We can use the Transition theorem to present A as a function of
k. only. Let the initial conditions are in form

A(x,y,2,0)= 4" (x,,2,0)exp{—ik,z}.

Then, applying the Transition theorem we have

FlA(x, y,2,0)| = Alk,.k, k. —ky.0)= 4" (k.. K, ,£.,0)

y?
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Thus, all functions in the backward Fourier transform depend on translated wave number
only

1 00 00 0

-expl-iky(z—vo)} [ [ [ 4" (k.. k, . k..0) exp{i ivt\/kf + k2 4 k? t}x

—0000 00

)

exp {— i(xkx + yk, + 2k, ) }dkxdkydléz.

In our study we shall consider spherically-symmetric functions 4*(x,y,z,0), i.e.

A*(x,y,z,O)zA*(r,O), r=\/x2 +y2 +2z°.

The Fourier image of a spherically-symmetric function is also spherically-symmetric, i.e.

FlA (5,2,20)= Fl4"(r0)|= 4" (k,.0), &k =fk> +k> +k2.
The backward radial Fourier integral is

1

272

A=

z vt %T ( )exp{+ ivtk }sm{rk }dk
0

24



2. Spherically-symmetric exact solutions with finite energy

A. Localized algebraic function of kind 4™ =1/ [1 +r*/ roz]

2
= A(x,y,2,0)= exp{—ik,z}/ {”r_z}

o

The Fourier image of the initial data 1s

ﬁ*(kr 0)= %exp{— rokr}‘ = Izl(lgr ,O): 2715 exp{— rolgr }

Hence, the corresponding solutions of the amplitude and wave equations are

Alx, y,2,1) = expi= ik, (2 = vt} [rj ’ (1 ' “’fﬂ

o

2 . \?
E(x,y,z,t):l/[r2+(l+m} ]
o To

2
E(x,y,z,O)zl/{l—kr—z}:A*

o
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B. Localized algebraic function of kind 4™ =1/ l(l +r2/ry )2J

= A(x, y,2.0)= explik,z} / [[1 + ,,2)2]

o

The Fourier image of the initial data 1s

A

A (k,,0)= %ro expi-rk | = 21(1% ,O): %ro exp{— r,k, }

Hence, the corresponding solutions of the amplitude and wave equations are

A(x, y,z,t) = exp{— ik, (z — vt )} [ (r2 i((}i 1 i:V))2 )2]
E(x,y,z,t)= {( 2(ro + itv) ]

r’ o+ (ro + itv)2 )2
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C. Localized algebraic function of kind A" =1/ |_(1 + 7t )4J

= A(x,y,2,0)=expi-ikyz |/ l(“’”zﬂ

The Fourier image of the initial data 1s

A’ (k,,0) = 9£6exp{— k343K, +k2) = Alf0)= 916exp{— i fB+3k +£2)
Hence, the corresponding solutions of the amplitude and wave equations are

A(x, y,z,t) = 6exp{—ik,(z — vt )}x
[8+ 290w ]+ tv]- 2 + 2 |- ir? + v(8 + itv)| - 200 3ir> + (20 +13irv)]
(r2 + (ro + itv)2 )4

 [8+29iv]+ w12 + 0202 i 4+ (8 + itv)| - 200 30> + (20 + 130
(r2 + (ro + itv)2 )4

E(x,y,z,t)z
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D. Localized algebraic function of kind 4" = (1 — 72 )/ (1 +r’ )4
= A(x,y,Z,O) = exp{— ikoZ} (1 = ”2)/(1 + ’”2)4

The Fourier image of the initial data 1s

A

A (k. ,0)= L%exp{— kk: = 121(]€r ,O): %exp{— k. }k2 .

Hence, the corresponding solutions of the amplitude and wave equations are

A%, y,2,1)= %exp{— ik, (z —v1)} { Lot }

(vt+r—i)4 (—vt+r+i)4

E<x,y,z,r>:3f{ L1 }

32| (vt+r—i) (~vt+r+i)
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E. Localized algebraic function of kind A4* = r(3 —r? )/ (1 +r’ )3
= A(x,y,2,0)= GXP{— ikoZ} ”(3 _”2)/(1 T ”2)3

The Fourier image of the initial data 1s

Nﬁ

r

.

Hence, the corresponding solutions of the amplitude and wave equations are

A (k,0)= T expl-k,Jk = Alk,.0)= 4—8exp{

sz~ ebtfe ) |

r

E(x,y,z,l‘)zz1 { 1 — 1 }

¥ (VI—I”—i)3 (vt+r—i)3
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Self-focusing of narrow band
(nano- and ps) pulses

2ikOZ—A+ A A+yld4=0
z

32



eMain physical idea — nonparaxial parabolic diffraction +
nonlinearity— stable soliton propagation.

= -

Propagation distance

An I(r)

Nonparaxial (diverges) diffraction + Cubic nonlinearity = Soligpn
regime



NONLINEAR REGIME OF BROAD-BAND OPTICAL PULSES

» NONLINEAR PROPAGATION OF BROAD-BAND PULSES IN AIR.
LORENTZ TYPE SOLITON.

After neglecting two small perturbations terms the corresponding nonlinear amplitude
equation for broad-band femtosecond pulses can be reduced to

1 o°C

AC ——

v ot

where 7y is the nonlinear coefficient, C, is the amplitude maximum and n, is the nonlinear

refractive index. The equation admits exact soliton solution propagating in forward direction

only

+yC° =0, y=Clkl6n,,

_sech(ln?) 2
= . =—,

’,7:\/x2+y2 +(z+ia)2—v(t+ia/v)2,
7 l+7

C
where y = 2.

» The 3D+1 soliton solution has Lorentz shape with asymmetric k_spectrum

» The solution preserves its spatial and spectral shape in time

34
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» PROPAGATION OF BROAD-BAND PULSES IN NONLINEAR VACUUM.
VORTEX LOCALIZED SOLUTION.

In 1935 Euler and Kockel predict one intrinsic nonlinearity to the electromagnetic vacuum
due to electron-positron nonlinear polarization. This leads to field-dependent dielectric tensor
in form

€y = Oy +% [20E‘2 _‘§‘2)+ 1B,B, }

where complex form of presentation of the electrical £, and magnetic B, components is used.
The term containing BB, vanishes when localized electromagnetic wave with only one
magnetic component B, 1s investigated. Thus, the dielectric response relevant to such pulse 1s

. — —
(2 :
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The magnetic field, rather than the electrical filed, appears in the expression for the dielectric
response and the nonlinear addition to the intensity profile (effective mass density) of one
electromagnetic wave in nonlinear vacuum can be expressed in electromagnetic units as
I, = (|[E’—|BJ?). When the spectral width of one pulse Ak_exceeds the values of the main wave
vector Ak, ~ k, the system of amplitude equations in nonlinear vacuum becomes

.
AE-L O E+7/(E2—‘B2)E:O

! S0mmie

0
25 2 4
B ~2 2= Tkye h
S R
We present the components of the electrical and magnetic fields as a vector sum of circular
and linear components

X y

B..

z

EZ
E =iE —E
B, =—
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Hence we get the following scalar system of equations

1 0°E. q 2 2 2)E
AEZ—C—2 P +y\E.|" +|E.| -|B,| JE. =0
0’E
AEC—L2 zc+)/QE22+ECZ—‘BZ‘2)EC:O
c” Ot
0’B
AB,—L2 2’+7/QE22+E62—\B,\2)BZ:0.
c” Ot

Let us now parameterize the space-time by pseudo-spherical coordinates (r, 1, 0, @)

ct =rsinhr
z=rcoshrcosd
y =rcoshzsinfsing@

x = rcosh zsin @ cos ¢,

where r = \/x2 +y2 +2z2 —c’t’.

39



The d’ Alambert operator in pseudo-spherical coordinates is

2 2 2
A_L@ _ia_i_@_l@_ztanhr&_i_ 1 A

ct ot ror or* r*or? r> 0r rlcosh?’r

0.,p°

Where A, ,1s the angular part of the usual Laplace operator

1 o0 (. 0 1 0’
Ay, == —| sin @ + —— -
’ sind 06 00 sin ~ 8 0

We solve the system of equations using the method of separation of the variables
E,(r,7.0,0)= R(NT,(2)Y (6,9), i=z,0c
B,(r,7.0.0)= R("NT,(2)Y,(0.0).

with an additional constrain on the angular and “spherical* time parts

2 2

Y. (0,0) +|T.[Y.(0,0) ~|1,]'|Y,(8,0)| = const,

TZ

TC

which separates the variables. The nonlinear terms appear in radial part only.
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The radial parts obey the equations

R ‘R A,
SR SR _A gy yRfR =0, i=zcl
r or or r

where A4; are separation constants. We look for localized solutions of the kind

sec h(ln r )
p :
The separation constants 4., a and vy satisfy the relations

R =

a’-1=4;2a’ =y.
The corresponding T — dependent parts of the equations are linear

d’T. dT .
-~ + 2sinh 7 cosh 7 — +(Ci—Al.cosh22')Tl.=0, i=2z,c,l,
drt drt

2
cosh “ 7

where C; are another separation constants connected with the angular part of the Laplace
operator Y(6,¢).
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The solutions of the T — equations which satisfy the constrain condition are

T =coshr; T, =coshz; T, =sinhrt

@

with separation constants for the electrical part 4, = 4. = 3; C, = C, = 2 and for the magnetic
part A, = 3; C, = 0 correspondingly. The magnetic part of the system of equations do not
depend from the angular components, i.e. Y(6,¢) = 0, while for the electrical part we have the
following linear system of equations

The solutions which satisfy the above system and the constrain condition are
Y. =cos @; T, =sinOexp(ip)

Using the relation between the separation constants 4. and the real number o we have

a’*=4;, a=%2; y=8.

42



Finally we can write the exact localized solution of the system of nonlinear equations

representing the propagation of electromagnetic wave in vacuum

sec h(ln r* )

E (r,7,0,p) = cosh 7 cos 6
+2
E (r,7,0,p) = See h(ln 4 )cosh 7 sin @ exp( i)
r
+2
B,(r,7,0,p) = = h{in - )sinh r.

The solution can be rewritten in Cartesian coordinates

2
E (x,y,z,t) = 4Z
r-+1
2(x + 1
E, (r,7,0,p) = 25*D)
rto+1
B 9 _ 2ct _ 2 2 2 2,2
[(I/')Ta 9(0)_ 4+1, r—\/x +y +z°" —cCct".
r

43



The linear part of the energy density (intensity) of the solution can be expressed as

2 2,2 2 2 2 2
](x,y,z,t)=4r + 8¢t _I_4(x +y°  +z +ct) i

(r4 + 1)z B sz +y® +z° - czt)z + IJ.

» The solution admits own orbital momentum [ = 1 for the electrical components

» The solution is with finite energy and presents nonlinear spherical shock wave
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Conclusions

1) New exact localized solutions of the linear amplitude and wave
equations are presented. The amplitude function decreases and the

energy distributes over whole space for finite time.

2) The soliton solution of the nonlinear wave equation admits
Lorentz” shape and propagates preserving the initial form and
spectrum.

3) The system of nonlinear vacuum equations is solved in 3D+1
Minkowski time-space. The solution admits own angular momentum
of the electrical part. The solution is with finite energy and presents

nonlinear spherical wave.
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