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Two-dimensional Grassmannian sigma model

We are interested in the set of maps Z from the two-sphere S2

into the Grassmann target manifold G (m, n) which are stationary
points of an energy functional.
The Grassmann manifold G (m, n) is the collection of
m-dimensional linear subspaces in C

n, it can be viewed as the
quotient

G (m, n) =
U(n)

U(m)× U(n −m)
, (1)

where U(n) is the unitary group of n × n complex matrix. The
maps Z can thus be parametrized by m column vectors in C

n put
in an array satisfying Z †Z = Im.
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The Grassmannian sigma model is thus the collection of maps

Z = (z1, z2, · · · , zm), zi ∈ C
n, z

†
i zj = δij , (2)

which are stationary points of the energy functional

E =

∫

Ω
Tr(DµZ )

†DµZ dx1dx2, (3)

where Dµ are the covariant derivatives defined as

DµΛ = ∂µΛ− Λ(Z †∂µZ ). (4)
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Here Ω is an open and connected subset of the two-dimensional
Euclidean space R

2 and x1 and x2 are local coordinates on Ω. The
energy functional (3) is invariant under global U(n) and local
U(m) gauge transformations, i.e. the transformation Z → UZV

leaves the energy functional invariant for U ∈ U(n) and
V (x1, x2) ∈ U(m). The Euler-Lagrange equations are obtained by
the least principle action and are given by

DµDµZ + Z (DµZ )
†DµZ = 0, Z †Z = Im. (5)
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The two-dimensional Grassmannian sigma model may also be
formulated in an gauge invariant way using orthogonal projectors.
An orthogonal projector P of rank m is defined as

P
† = P, P

2 = P, TrP = m. (6)

Thus in the G (m, n) model, we see that P defined as

P = ZZ † (7)

is an orthogonal projector.
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In this formulation, the energy functional (3) and Euler-Lagrange
equations (5) may be expressed, respectively, as

E =

∫

Ω
Tr(∂+P∂−P)dx+dx− (8)

and
[∂+∂−P,P] = 0, P

2 = P. (9)

Here the local coordinates x± are defined as x± = x1 ± ix2 and
∂± = 1

2(∂x1 ∓ i∂x2).
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Special solutions of the Euler-Lagrange equations

In the G (1, n) ∼= CPn−1, Zakrzewski and Din have constructed all
finite action solutions of the Euler-Lagrange equations. In that
construction, we get three classes of solutions: holomorphics,
antiholomorphics and mixed. The mixed and antiholomorphics
solutions can be determined from the holomorphic ones by the
following procedure:
An holomorphic solution of the Euler-Lagrange equation has the
form

Z =
f

|f |
, f = f (x+). (10)
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One then introduce an orthogonalizing operator P+ defined as

P+g = ∂+g −
g †∂+g

|g |2
g (11)

and construct from f = f (x+) ∈ C
n the orthogonalized set

{f ,P+f ,P
2
+f , · · · ,P

n−1
+ f } where Pn

+f = 0 and P i
+f = P+(P

i−1
+ f ).

In this set, f is holomorphic, Pn−1
+ is antiholomorphic and P

j
+f are

mixed for 1 ≤ j ≤ n − 2. Thus, we have that all finite action
solutions of the CPn−1 sigma model are given as

Z =
P i
+f

|P i
+f |

, 1 ≤ i ≤ n − 1. (12)
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For the general G (m, n) sigma model, we may construct special
solutions using the ones of the CPn−1. Indeed, we have that

Z =

(

P i1
+f

|P i1
+f |

,
P i2
+f

|P i2
+f |

, · · · ,
P im
+ f

|P im
+ f |

)

, 0 ≤ i1 < i2 < · · · < im ≤ n−1,

(13)
solves the Euler-Lagrange equations. There is a lot more finite
action solutions of the Euler-Lagrange equations, but in this
conference we will mostly concentrate on those solutions. The
holomorphic solution is such that ij = j − 1 for j = 1, 2, · · · ,m.
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We refer the interested reader to the book of Zakrzewski for
further discussion on the construction of solutions of the G (m, n)
sigma model.
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Surfaces in R
n2−1 obtained from the G (m, n) sigma

model

The projector formalism , can be used, among other things, for the
construction of surfaces in R

n2−1 obtained from the G (m, n) sigma
model. For this purpose, it is convenient to write the
Euler-Lagrange equations as a conservation law as

∂+K − ∂−K
† = 0, K = [∂−P,P]. (14)
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To generate surfaces in R
n2−1, we follow the Weierstrass

immersion formula and define X , the coordinates of the surface, by
line integrals

X (x−, x+) = i

∫

γ

(K †dx ′+ + Kdx ′−) ∈ su(n). (15)

We thus see that for solutions P of the Euler-Lagrange equations,
the line integrals do not depend on the contour of integration γ ,
but only on its endpoints (of which one is taken at ∞ and the
other at (x+, x−)).
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In order to generate surfaces in R
n2−1 from the solutions of the

Grassmannian sigma model and to deduce some of there
properties, we identify the Euclidean space R

n2−1 with the Lie
algebra su(n) (remember X ∈ su(n)).
Having done such an identification, we consider a scalar product
on su(n) given by

(A,B) = −
1

2
Tr(AB), A,B ∈ su(n). (16)

Laurent Delisle Constant Curvature solutions of Grassmannian sigma models



Two-dimensional Grassmannian sigma model
Special solutions of the Euler-Lagrange equations

Surfaces in R
n2−1 obtained from the G(m, n) sigma model

Constant curvature solutions of Grassmannian sigma model
Conjectures in the Holomorphic Cases

Future outlooks
References

We may thus calculate different properties of these surfaces
defined by line integrals such as the first fundamental form I and
the Gaussian curvature K. We have, for solutions of the
Grassmannian sigma model,

I = (dX , dX ) = Tr(∂+P∂−P)dx+dx− = Ldx+dx− (17)

and

K = −
1

L
∂+∂− lnL. (18)
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The CPn−1 sigma model
The general Grassmannian sigma model

Constant curvature solutions of Grassmannian sigma

model

In order to get constant Gaussian curvature solutions, the
Lagrangian density must be such that

L ∝ (1 + |x |2)−2. (19)

In the G (m, n) sigma model, we consider orthogonal projectors of
the form

P = ZZ † =
n−1
∑

i=0

αi

P i
+f ⊗ (P i

+f )
†

|P i
+f |

2
, αi ∈ {0, 1}, (20)

where m of the αi ’s are non-zero.
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The CPn−1 sigma model
The general Grassmannian sigma model

In this case, the Lagrangian density is explicitly given as

L =

n−1
∑

i=1

(αi−1 − αi)
2 |P i

+f |
2

|P i−1
+ f |2

= ∂+∂− ln

n−1
∏

i=1

M
(αi−1−αi )

2

i , (21)

where the quantities Mi are defined as

Mi =

i−1
∏

k=0

|Pk
+f |

2, M0 = 1. (22)
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The CPn−1 sigma model
The general Grassmannian sigma model

This new convenient way of writing the Lagrangian density permits
us to restate the criterion for constant curvature solutions. Indeed,
in order to get constant curvature solutions, one as to impose the
condition

n−1
∏

i=1

M
(αi−1−αi )

2

i ∝ (1 + |x |2)r , r ∈ N (23)

and, in this case (actually it is in general), the Gaussian curvature
K is constant and is given by

K =
4

r
. (24)
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The CPn−1 sigma model
The general Grassmannian sigma model

So our main goal is to investigate the possible values of the integer
r and to give a complete classification of constant curvature
solutions of the Grassmannian G (m, n) sigma model.
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The CPn−1 sigma model
The general Grassmannian sigma model

The CP
n−1 sigma model

Let us first consider the holomorphic solution corresponding to
α0 = 1 and αi = 0 for i ≥ 1. In this case, the Lagrangian density
reduces to

L = ∂+∂− ln |f |2, (25)

where we recall that f = f (x+).
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The CPn−1 sigma model
The general Grassmannian sigma model

So it as been shown that up to gauge symmetry, the function f

which leads to constant Gaussian curvature is the Veronese curve
given explicitly as

f T (x+) =

(

1,

√

(

n − 1

1

)

x+, · · · ,

√

(

n − 1

r

)

x r+, · · · , x
n−1
+

)

.

(26)
In this case, the Gaussian curvature is given by

K =
4

n− 1
. (27)
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The CPn−1 sigma model
The general Grassmannian sigma model

For non-holomorphic solutions (αj 6= 0), the Lagrangian density is
given as

L = ∂+∂− lnMjMj+1. (28)

Using the following property of the Veronese curve

|Pk
+f |

2 ∝ (1 + |x |2)n−1−2k , (29)

we get, for αj 6= 0, a constant Gaussian curvature of

K =
4

rj(n)
, rj(n) = (n − 1) + 2j(n − 1− j). (30)
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The CPn−1 sigma model
The general Grassmannian sigma model

From this result, we see that for j = 0 (holomorphic solution) and
j = n − 1 (antiholomorphic solution) we get the maximal value of
the Gaussian curvature given as K = 4

n−1 . For the CP
n−1, we have

given a complete classification of constant curvature solutions in
terms of the Veronese curves.
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The CPn−1 sigma model
The general Grassmannian sigma model

The general Grassmannian sigma model

We have shown previously that

P =

n−1
∑

i=0

αi

P i
+f ⊗ (P i

+f )
†

|P i
+f |

2
, αi ∈ {0, 1} (31)

and f = f (x+) solves the Euler-Lagrange equations and leads to
finite action solutions of our Grassmannian sigma model. If f ∈ C

n

is choosen to be the Veronese curve, then P given above leads to
constant Gaussian curvature solution given by

K =
4

∑n−1
i=1 (αi − αi−1)2i(n− i)

. (32)
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The CPn−1 sigma model
The general Grassmannian sigma model

This result generalises the result for the CPn−1 sigma model. This,
however, is not a complete classification of constant curvature
solutions for more general Grassmannians. We may miss out some
solutions which are not based on the Veronese curves.
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Conjectures in the Holomorphic Cases

For the holomorphic solutions of constant Gaussian curvature, we
have establish, from our investigation and results known so far, two
conjectures:

Conjecture 1: The maximal value of r for which there exists
a holomorphic solution of G (m, n) of constant curvature is
r = m(n −m). Furthermore, this solution corresponds to the
Veronese holomorphic curve.

Conjecture 2: Holomorphic solutions of constant curvature
may be constructed for all integers r such that
1 ≤ r ≤ m(n −m).
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These two conjectures are true in the G (1, n) case, using the
simple embedding G (1, j) ⊂ G (1, n) for 2 ≤ j ≤ n− 1 and the
Veronese curve.
We have proved our conjectures in the G (2, k) models for
k = 3, 4, 5, 6. A systematic way of proving our conjectures is still
an open questions.
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Future outlooks

Give a proof of our conjectures using new methods from
algebraic geometry such as the Plücker embedding and
coordinates.

Study the Supersymmetric version to better understand the
classical model.

Give a complete classification of constant Gaussian curvature
solutions for general Grassmannians.
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