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Motivations

Finding closed-form solutions in compressible hyperelasticity quite challenging: very few such
solutions in the literature.

Particular classes of exact solutions obtained for several models using Lie groups.

Lie symmetries widely used in the analysis of contemporary elasticity models.
In particular, classification of Lie point symmetries for 1D and 2D nonlocal elastodynamics in
[Bluman, Anco, Cheviakov, Springer, 2010; Bower. Applied Mechanics of Solids, 2009].

Invariant solutions for radial motions of compressible hyperelastic spheres & cylinders
[Capriz & Mariano, 2007].

Similarity solutions for the motion of hyperelastic solids in [Cheviakov, GEM package, Computer
Physics Communications, 2007].

From a more formal viewpoint, Lie symmetries constitute a guide in the Lagrangian and
Hamiltonian formalisms in continuum mechanics, especially for complex materials endowed with
a microstructure [England & Spencer, 2005].

For models admitting a variational formulation, one-to-one correspondence between variational
Lie symmetries and local conservation laws through Noether's theorem.
For non-variational models, this relation generally does not hold [Ericksen, 2000].



Outline of the presentation

* Nonlinear dynamic equations for isotropic homogeneous hyperelastic materials
considered in the Lagrangian formulation.

* Derive explicit criterion of existence of a natural state of a given constitutive law.
Used to derive natural state conditions for some common constitutive relations.

* Equivalence transformations computed for 2D planar motions of Ciarlet-Mooney-Rivlin
solids; yields reduction of the number of parameters in the constitutive law.

* Find special value of traveling wave speed for which nonlinear Ciarlet-Mooney-Rivlin
equations admit an additional infinite set of point symmetries.

» Classification of point symmetries in dynamical case & for traveling wave coordinates.

 Perspectives.



Finite strain kinematics

- Material and Eulerian coordinates.
x=¢(X,t)>F=V,x Transformation gradient (tangent mapping)
dx :
v=— velocity
dt

. . . i i i 00
Use cartesian coordinates with flat space: 9" =8"—>F = Evo Fi

Orientation preserving condition: J:= det(F) >0

Continuity equation: P=po/J



Boundary value problem in hyperelasticity

Material (Lagrangian) format:

poX, = DivyP +p,R cons. linear momentum
R =R(X,t) body forces per unit mass
FPT=P.F' cons. angular momentum

P =p,0:W(F) hyperelastic model

W(F) strain energy density per unit volume

Physical (Eulerian) format:

p,V°, =div,6 +pr cons. linear momentum
VE(x,t) = v(X,t) =dx(X,t)/ dt

r=r(x,t) body forces per actual unit mass

N
6 =6 cons. angular momentum

t = o.n traction vector, ¢ Cauchy stress — P :=Jo.F " first Piola-Kirchhoff stress

— T =P.N nominal traction (force on reference surface element)



Boundary value problem in hyperelasticity

For zero forcing, strong form obeys extremum principle:
V[x]:= jpo (W(F)+VR (X))dV potential energy
Q0

K[x]:= % I po|[X.| AV kinetic energy
Q

H =K +V Hamiltonian
L =K -V Lagrangian > L=I 1(x, X, F)dV
Qg

0
—> EDXtI(X,xt,F) =D,l(x,x,,F) Euler-Lagrange equ.= momentum equ.

in Lagrangian format.



Hyperelastic constitutive models
polar decomposition F=R.U=V.R -B:=FF' =V? C=F'.F=U? -, A,,\, eigenvalues of U,V
> 1 =Tr(B)=1" + 1, + A%, L =1"R,° + 4,707 +4,°0°, |, = Det(B) =1L,

Iy = IR, I, = IR, 15 == J reduced invariants to isolate volume changes
> W=®(A,A,,4,)=U(l,1,,1;)= U(il 1, is) for isotropic materials
Ciarlet Mooney-Rivlin materials: W =a(l, =3)+b(l,-3)—cl, —%d logl,, a>0,b,c,d>0
General form of const. law for isotropic materials:
S=F*'P=2p, {ocol +0,C+ ocZCZ}, Qlorr =01, (11 15,15)
For incompressible materials: P =—pF" +p,0:W(F), p=p(Xt) hydrostatic pressure

Neo-Hookean and Mooney-Rivlin constitutive models

Type neo-Hookean Mooney-Rivlin
Standard [21] W = aly. W = aly + bls,
a > 0. a,b>0
Generalized [23] W =aly + e(J — 1)2, W =aly + bla+e(J — 1)2
a,c > 0. a,b,ec>0
Generalized (Ciarlet) | W =aly + I'(J). W =al, +bla+T(J)
“compressible” [20] I'(q) =cq¢* —dlogq, a,c.d>0 | T(q)=cqg*—dlogq, a.b.c,d>0




Constitutive relations and natural states
Natural state F=1=06=0 vanishing self-equilibrated stress (no external load)
Neo-Hookean material fails to have natural states: W =al, > P=2p,F »>06=2p]l
Mooney-Rivlin materials (c=0=d) do not have natural states.
—> Natural state requires external forces —» Stress tensors cannot be linear in F.

Theorem: a hyperelastic material with const. law given by W =U(I,1,,1,)
o _ouU N ouU

has zero residual stress iff +2 =0 when F=1
a, o, ol
: oD . .
Alternative: for W =® (%, A,,A;) >t = i 0 when A, =A, =X, =1: Biot stress vanishes
k
Type Strain energy density function W Natural state condition
Hadamard material ceillh — 3)+eca(lz— 3)+ H(I3) a+2b+H'(1)=0
{incl. neo-Hookean., Moonev-Rivlin)
Generalized Blatz-Ko %f (Il —1- } + }}I;‘i‘) All admissible ., f;
rubber model +§lf1—fl(§§—1—tl,+:',fi‘) = =
Generalized Mooney-Rivlin material | a(l; —3) + b(I; — 3) +e(J - 1)? All admissible a.b, ¢
Ogden material E:‘il ail AT" + AZ' +A5Y) All admissible ai, b;, ai, 33
+ TN b (A% + (Aada)¥ + (Aad)¥) | H'(1) =0
+H ( A1 )kzr“ks;i




Point symmetries and equivalence transformations

Consider PDE system R° (X, u,@u,...,@ku) =0, o=1...N — derivatives of order at most k
n independent variables z = (Zl,...,zn )
m dependent var. u(z) = (ul(z),...,um(z))
One-parameter Lie group of transformations of variables (z,u): one-to-one transformation
acting in the m+n dimensional space (z,u) of the form:
z' =f'(z,u;e) =7 +¢¢ (Z,U)+O(82), i=1..n
ut =g (z,u;e) =2" +en* (z,u)+O(&*), p=1..m
components define infinitesimal generator Y = Ef (Z, U)%H]“ (Z, u)é—“
X u

(z,u) transform -> transform of partial derivatives of u(z) given by prolongation formulas.

One-parameter Lie group of point transformations = group of point symmetries of a PDE
system iff its prolongation leaves invariant the solution manifold of the PDE in the space
including u, z and all required partial derivatives of u(z).

—> |[f u(z) is a solution, then u*(z") is also solution of the same system.

Symmetry components found in algorithmic way from the determining equations:
Y R (X, u,...,&"u) =0, oo =1...N on solutions



Point symmetries and equivalence transformations (2)

Notion of equivalence transformations closely related to local symmetries.

Equivalence transformations preserve differential structure of equations / modify constitutive
and/or parameters of a DE model.

Equivalence transformations used to reduce number of parameters of a given const. model.

Interest: analyses involving classifications; construct exact solutions for new sets of constitutive
functions/parameters, from known exact solutions for given constitutive functions/parameters.
Consider family of PDE systems R"(X,u,éu,...,aku) =0, k=1..N
with n independent variables z =(zl,...,z”) m dependent variables u(z) =(u1(z),...,um(z))
involving set of constitutive functions and/or parameters K =(K,,...,K )
One-parameter Lie group of equivalence transformations = Lie group of transformations
7 =f'(z,u;e), i=1..n
u" =g"(z,ue), p=1..m
K =G, (zue), 1=1..L

maps a given PDE syst. Into a new one with new constitutive functions.



Point symmetries and equivalence transformations (3)

Equivalence transformations computed through sol. of determining equ.

Y (K)R®(x,u,0u,..68u) =0, a=1..N

Prolongation of inifnitesimal generator for the one-parameter Lie group of point transformations

z*=1(z,u;e), u*=g(z,u;e) global form

i 0 0
Y=¢(z,u)—4+n"(z,u)—
g (zu) =0 (2u) =
—slocal form z* =7 +8§i(x,u)+0(82), i=1.n
u* =u"+en'(x,u)+0(’), n=1.m

Need to specify variables on which the const. Functions / Parameters depend.

Ex.1: if K;=a, K,=b are 2 constant parameters of Mooney-Rivlin model,

Corresponding equivalence transformations will be of the form a=G,(a,b;e), b=G,(a,b;¢)

Ex.2: for K;=Q(x), x independent var., equivalence transf. for Q(x) willbe Q(X)=G,(x,Q(x);¢)



Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model

Strain energy density ~ W=a(l,-3)+b(l,-3)-cl, —%dlog l,, a>0,b,c,d>0

Theorem: 2D Ciarlet-Mooney-Rivlin model admits following equivalence transformations

i = 2t +eq,

..-...1 _ £3 1 . Q .
T = o (Xiconey — Xainer) 450 5 ot exGlarhe,d) + O,
X2 — = (Xlsin57 +ngjn£7) + £x, 3:5—53@({1,5,0, d) ‘|‘O(€Q);
T = =2zl 4 fli(e), c=c+ ESG((I, b, C>d) + O(Eg)’
2 = &ag+ ), d=d.
pm = €%p,
_ £ f1(z) = & f*(¢)
1 — gty %J W 2 = R?
R — R s dt? R R R + dﬁg >
% - —} _|_8'2£3—Q£2 ({L + b)? AE; = b,
T = —btetsta(pi), d = e*24,

Includes scalings, translations and rotations of material coordinates (parameters €3:€4:€5,€7)

Galilean transformations, transformations of eulerian coord. and time (parameters €:,€;,
arbitrary functions f,(t), f,(t))

Scaling of body density in ref. configuration ( €s),
transformations of parameters a,b,c,d of const. model (parameters €,,€3)



Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model

., oP* op*® oP?  op*
PoX e = 5T T o APV PG

Po = Po (X", X7), P’ =p0(xl,xz)g—\év, i,j=1,2

ij

_poR1:O’ poX2 —p0R2=0

2D motions: <

R, R 0
F= F21 F22
0 0 1

Th.: Ciarlet-Mooney-Rivlin model in 2D depends only on 3 constitutive parameters

—> 2D first Piola-Kirchhoff stress tensor takes the form

F, F 2 -p .
F,=| " *|>C,=| 2 | cofactor matrix
F, F F F

21 22

P=p, (AFZ +BJC, —%Czj

A=a+b>0,B=b+c>0,d>0

Previous Theorems can be used for direct analysis of 2D models.



Equivalence transformations for 2D Ciarlet-Mooney-Rivlin model

Used to present equivalence and symmetry classification in a more compact form:

Set of equivalence transformations of 2D Ciarlet-Mooney-Rivlin model given by

t = et 4 g4,

Tl — 2ot (X!coser — X?siney) + 24, X2 = gleote (X1siney + X?siney) + ey,
7l = elegl 4 i), ¢ = g 4 A1),

po = €%po,

oo gL ? :;Q(t), B o_ R4 dgﬁg(t),

A = e2e2t2es 4 B = e*s B,

d = e&d

?
€,€,:€3:84,85,€5 arbitrary constants.

f1(t),f2(t) arbitrary functions.

Action of equivalence transformations on essential parameters A, B, d is pure scalings.



Symmetry classification for time-dependent 2D Ciarlet-Mooney-Rivlin models

Classify symmetries w.r. to constants A, B>0, d and types of density functions p, (Xl,XZ) =Cte
Restrict to zero external body forces. Given modulo the previous equivalence transformations

Case Point symmetries
_ 8 _ 8 I _ & . a _ 8 _ a
General Yj_ = E’YQ = W?Yg = m,Y;i = W?Ys = m?Ys = tm,Yf = 1@,
2 8 1 8 2 8 i 8 a i & 2 8 i 8 2 8
Ves=X'gm —Xggm Ye=0"57 g Yuw=lg+Xgat+t X gzt +2° 5
A=0, Vi, Yo, Ye, Y4, Ve, Yo, Yo, Y, Yo, Yo,

B.d arbitrary | Ya1 = £1(X?)52r, Yiz = (a—?hfg(_}fi,XQ)) - (%fz(xi,){?)) 2.,
F1(X?), f2(X*, X?) are arbitrary functions

A=d=0 Yi1,Y2, Y, Ya,Ys, Yg, Yy, Yg, Yo, Y10, Y41, Y12,

B arbitrary Yia = t% + Xi-a%r

A=B=0 Y1, Y2, Ys, Y4, Ys, Yo, ¥v, Y3, Yo, Y10, Y11, Y12,

d arbitrary Y44 = Xiﬁr

symmetry generators Y, Yo, Y3, ¥ 4, ¥ ¥ correspond to translations in dependent
and independent variables; generators Yg, Y+ correspond to Galilean transformations

gl = gl + &%, 72 — z° + £%;
generators Yg, Yg correspond to rotations in material and Fulerian coordinates respectively;
generators Y 10, Y 13, ¥ 14 correspond to scaling transformations.

Each of the generators Y11, Y 1o corresponds|to an infinite number of symmetries through an
arbitrary function.



Symmetry classification of 2D Ciarlet-Mooney-Rivlin model
in traveling wave coordinates

—  —
Assume that medium moves w.r. to observer at constant speed s>0 in direction X1,
With this ansatz, one has X' (t,Xl,XZ)zwi (z,Xz), z=X" —st, i=12

Consider body density in ref. configuration of the form p, =p, (X°)

Assume no-forcing.
o°X' (Xl —st,Xz)

Transformation of partial derivatives in PDE’s: p, pve >
Z




| B ]
Full symmetry classification of PDE system in travelling wave coordinates
modulo previous equivalence transformations

S T —
Point gyrmmetry classification for the two-dimensional Ciarlet-Mooney-Fivlm models
mn travelimg-wave coordinates, given by (30), (34), (38), with zero forcing and py = const > 0.

Case number | Case | Point symmetries
1 General Yi=2, Y= 32,V = 325, Yy =32 —w' 53>
2 po(X%) = (X° + ¢1)™, g1, = const, | Y1, Y2, Y5, Ya,
¢ # 0, A, B,d,s arbitrary Vs =z%+(X2+q1)§g+w1£l—+w2£5
3a po(X?) = exp(ga X %), g1 = const £0, | Vi, Yo, Ve, Yy,
A, B,d, s arbitrary Ve = ﬁg
3b PD(XQJ = exP(QiXQ)‘l gy = const # 0, Yy, T2, Y3, Y4,
A,d arbitrary, B =0, Y =— (2450) 52+ h(0) 2
43 po(X?) > 0 arbitrary, Wy, Y2, ¥s, V4,
A B acbitrary, d =0, | * = 4] Yr =24 +w'sir + w3, Ya = (pnf;—ndxz) e
Ty = le:z)po%, J2(#) iz an arbitrary function
4b po(X?) > 0 arbitrary, Y1, Y2, Vs, Ya,
A, d arbitrary, B=0,|s% = A| Yy = z%
Ra po = consk Y1, Y2, Ve, Vi, Ve(m = 0), Vs,
A, B.d, s arbitrary Yio :XQ% - ﬁg%
Eb £0 = const, =4 |, Yi,Yz,Ys,Yq,Ystch = 0:],
A, B, d arbitrary Y5 = fg(z}&—gg, fa(2) is an arbitrery function
Ko po = const, [s? = AI Yy, Yo, Vs, Y, Ye(m =0), Yo, Y5
? d ' + 1 v + (s
A, d arbitrary, B =0

syrmmetry generators Y1, Yo, Y3 correspond to translations in dependent and
independent variables; generator Y4 corresponds to rotations in FEulerian coordinates; generators
Y, Y», Yg, Y1o correspond to scaling transformations. Additional symmetries Yy, Yg, Yg, Y10
and additional imfinite families of symmetries Yff)) (02?), ?5?) arige for the special value (39) of
the translation speed.



[ |
Full symmetry classification of PDE system in travelling wave coordinates
modulo previous equivalence transformations

General non-linear Ciarlet-Mooney-Rivlin model has special wave speed for which equations

admit additional symmetries including infinite set of point symmetries, with generators Y.*),Y{*, v\~

Special wave speed equal to the constant wave speed s*=+a+b

of linear neo-Hookean version of dynamic equations

( L 82X12+ 82x12
o(x') a(x?)

: _n Eﬁzxz2+ 82x22
o(x') a(x?)

\

A=a+b>0, B=b+c>0,d>0



Conclusion - Perspectives

 Existence of natural states for hyperelastic materials analyzed: question of high importance
for consistency formulation of BVPs for numerical computations.

» Classical neo-Hookean and Mooney-Rivlin models do not have a natural state / Hadamard
materials may admit a natural state according to range of parameters.

* Point symmetries of the 2D Ciarlet-Mooney-Rivlin model in full dynamical setting classified
with symbolic software. Such symmetries important to construct exact solutions and
conservation laws.

« Computation of symmetry structure of elasticity models in non-planar 2D reductions
(axial symmetry) & in 3D.

 Extension to anisotropic constitutive behavior: case of one and two families of fibers.



