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e Affine motion and affine bodies
We describe the configuration of an affine body by
&' (r,p;8) = r'(t) + @'k (t)a¥,

where z° are spatial variables, r* are coordinates of the centre of mass, ¢’ are internal (relative) param-
eters, and a® are material variables.
To describe equations of motion we use the following definitions:

e the total mass of the body and the co-moving (constant) tensor of inertia in the material space
W — /du, TR :/aKaLdu(a)

e when the centre of mass is placed at a® = 0, then

B — /aKdu(a) =0

e the total force and the spatial components of the co-moving dipole of forces distribution

Fi— /ﬂ(a)du(a), R = /SOiKSDjLaKaLdM(a) N SOiKSOjL/CLKaLdM(a)-
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o Affine motion and affine bodies (cont.)

The equations of motion can be written in the following form:

d*r’ i A e ij
Mdt2:F, QOKW(] — B

Alternative balance forms of the above equations of motion:

dp' ; dK¥  dp'x do'p _xp | i
_F N N
d ) a1

where p’ is a linear momentum and K is an affine spin:
drt X - deiy,
SN K49 — JKL‘
dt N
The angular momentum (spin) S¥ = K% — K% is conserved, if N¥ is symmetric:
dS%
dt

p=M

= N — N#,

In other words: D Ik
P ; \
b
dt ’ dt
where the affine velocity, called also Eringen’s “gyration”, is

— i, K™ + NY,
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o Affine motion and affine bodies (cont.)

If Lagrangian is given by N
LZT—V(Tz,(PZK) )

where the kinetic energy is

M dridr 1 do'xde’n gr
T =T +Tinw= 59— U o) s
i+t = o D T

then the forces and the momentum of forces are

3 oV N oV )
0 NG N¥ — kj
g arj ) 90 A 890kAg
There is also another formula: N T,
= N 4 g
dt § 8gij

When there exist dissipative forces non-derivable from Lagrangian, then there appear some additional
terms. In the simplest case, we choose them just linear or quadratic in generalized velocities.




e Gyroscopic constraints

There are some additional geometric, namely group-implied, forces imposed on the system. For ex-
ample, gyroscopic constraints (pseudo-holonomic constraints of rigid motion) imply that Qf;, Q4p are
respectively g- and n-skew-symmetric angular velocities in spatial and co-moving representations,

Q= - = —gig", Qg = —Qp? = —npcQ°pnP4,

where g is the metric tensor of the physical space and 7 is the material metric.
It is easy to see that the above conditions are holonomic and may be written down as the conditions
of isometry,
gz’jSOZACP]B = TNAB-

Then the reaction moments Ny are symmetric,
Nrij = Ngj;

and our equations are independent of explicitly non-specified reactions. Of course, gyroscopic reactions
do not vanish, but their full tensor contractions with skew-symmetric affine virtual velocities (angular
velocities) are vanishing in virtue of constraints.

So, if we are taking the skew-symmetric part of original equations, we can eliminate reaction moments
and then obtain the effective equations of motion.




e Isochoric constraints (incompressible body)
In the case of incompressible body (isochoric constraints) the traces of affine velocities vanish:
Tr Q2 =\OF
The total contractions of such virtual €2-s with the reaction affine moment Nz must vanish:
Ng"Qy; = NgOF g = 0.
It is easy to see that then reactions are pure traces,
Ng'; =)\,  Ng7=Xg",

where
A= l Tr NR = l gijNRij.
n n
So, to eliminate the Lagrange multiplier A, we must take the constraints condition (i.e., det ¢ = const)
jointly with the g-traceless part of the initial equation itself:
) d2 g 1 d2 b
©'a deB S = Egab(PaA d(';B

N N 1 N
JABgzy = N — EgabNabg”-




o Constraints implied by linear conformal group (rotations and dilatations)
In such a case an affine velocity (gyration) has the form:
Qij = wij + Oé(Sij

where w'; is the g-skew-symmetric angular velocity, and « is an arbitrary real, dilatational parameter, so
that N
9i50° 49’ B = Aap, A>0.
The reaction-free equations of motion consist of the skew-symmetric part of the original equation and
of the g-trace of that equation, and reaction moments Nz are symmetric and g-traceless:

N2 2o D )
ZA—dizBJAB = SDJA—dS:QB JAB — NN
i d? jB ij
9ij A dg; JAB —\ge

e Constraints of purely rotation-free affine motion

It is a very interesting example of nonholonomic constraints, when € is g-symmetric (the only geomet-
rically correct definition):
QF = Q) = O — g;,g"Q% = 0.
Then the reactions forces are anti-symmetric. So, the above equation must be joined with the sym-
metric part of equations of motion as balance laws:
2, &2

L 'B ij ji
@AFJAB‘FQOJAFJAB = N" + N7,




¢ Elimination of reaction forces: d’Alembert prescription

Let Lagrangian of the dynamical system be L (q,q), i.e., it is a function of generalized coordinates

q',...,q" and their velocities, but we can also take the time into a consideration explicitly, i.e., L (, q, q).

Then the constraints are given by the following expressions:
F,(q,4) =0 (F, (¢, q,dR="0I8 a = 13N
In applications mostly often we have the constraints linear in velocities:
Fo(g,4) = wai (9) q'.
Then the d’Alembert principle give us the following equations of motion:

o 92\
dtog  oq "

where R; are reaction forces, which vanish on velocities compatible with constraints:
wei (@) ¢ = 0, ie., Ri¢' = 0.

This implies that
Ri = )\“wai.




o d’Alembert prescription (cont.)

By analogy the similar expressions can be written also for systems with dissipative forces. The non-
constrained dynamics is given by the following equations of motion:

where D; are covariant vectors of non-variational, e.g., friction forces.
The corresponding constrained systems is given by the expressions:

dt 0¢®  0q* X

Fa(q(t),d(#) = wailg)d' =0

where R; are the reaction forces.




e Elimination of reaction forces: Vakonomic prescription

The variational principle constrained by F;, = 0 is given by the following expressions:

where the variations dq’ (t) are subject to constraints.
The Lusternik theorem give us that the above variational principle is equivalent to the corresponding

non-restricted principle:
5/LM ()t =0

where p is the Lagrange multiplier and L [u] is given by

Lul (q(t), Q(t)) = L(q(t),4(t)) — " Fa(q(t), 4(t))-

Mathematically here u* are some a priori unknown functions of time.




e Linear vakonomic constraints

The variational principle for L [u] implies that for constraints that are linear in velocities,

Fu(q(t), 4(t)) = waia(t))d'(t)
we can write the following equations of motion:

doL oL _ 4w H(GERENGEI
itog  og¢  dt @ M \ag oy )1

Fa(q(t)7 q(t)) N waz(q(t))qz(t) S

This is the system of (n + m) differential equations for the (n + m) variables ¢’ (¢) and u® (¢) as functions
of time.

Correspondingly the constraints reactions are given as follows:
du® ) <8wai Bwaj> dq’

Ri=ﬁwm'+,u dt.

0qi oq’




o Elimination of reaction forces: Linear constraints (summary)

So, there are two prescriptions for calculating R;, namely:

1. d’Alembert prescription: ‘
Ri = X‘wai, i.e., quz =0

for every virtual velocity satisfying the constraints,

2. Vaconomic prescription:

dp® a
R; = g i TH (

8(4}(”' N Gwaj @
oq? dqt ) dt’
e Holonomic constraints

For the holonomic constraints
F,(q) =0, =1 N\

in the reaction forces survives only the first term and then they are given by the usual d’Alembert
expression
oA

R, = XNwy; with the multiplier prt




e Nonholonomic constraints of rotation-free affine motion

Let us remind that the affine velocity and its co-moving counterpart are given by the expressions:

i de'a _1a OA _14 d¥'B —14 (i ., .j
Q= dt<P1j, Q%p = IS 259 B.

For the gyroscopic (metrically rigid) motion we have that
Qij N\ jS SN Qij o gjaQabgbi =0

i.e., they are g-antisymmetric. This is nonholonomic description of holonomic constraints. Skew-symmetric
matrices form a Lie algebra and those equations are integrated to the orthogonal group.
By analogy, the rotation-free motion is primarily described by

i.e., by the g-symmetry. But symmetric matrices do not form a Lie algebra. Moreover, those are truly
nonholonomic constraints and they are not integrated to any submanifold.




e Polar decomposition
The polar decomposition of ¢ can be written as follows:
¢ =UA,
where U is an orthogonal (isometric) matrix and A is an n-symmetric one:
UeOUmn;V,g), A € Symm (U, n), ie,  MaB=gi¥'a¢’ s, nac A% s = npcA° 4.

The co-moving angular velocity @ of the U-rotator is given by

avu
O=U"1—.
dt
The kinetic energy can be written as the sum of the translational and internal (relative) terms:

M dridri 1 dotade’s _up

= g —— + —gi—— SR
T e S S T TR R T
In the polar decomposition the internal kinetic energy T}, becomes as follows:
1 dAK,dAL \ dAL AR
Tint = KL ATBJAB + nKLWKCACATBJAB + énKLWKCWLDACAADBJAB~




e Polar decomposition (cont.)
Obviously, @ is n-skew-symmetric:
ﬂAcch x _nBCWCA

The g-symmetry constraints on €2 imply that

1T, dA] 10 NN
w_z[A’dt}_2<A &k

Substituting this to the expression for the internal kinetic energy 7i,;, we obtain that

1 dAX , dALg 1
TVak - JAB A—lK
int 2L dt + gL dt dt
ok énKLA—lK dill C'AC AL df; DAD JAB

The simplest vakonomic Lagrangian is obtained by putting:
LVak TVak i Ve (G) ’

int int

where the potential V' depends on the Green deformation tensor G:

Gap = gijp'ap’ B = ncp A€ 4 AP .




e Vakonomic lagrangian and resulting equations of motion

The variational derivative of T,v2 with respect to the symmetric tensor A g = NacASp = Apya is

int

given by

(5TV§k 1 d? 1d dAE
in NN\ ———A(A JB)L RN A—l (A JB)L AC
T | 42 ) - dt
1 d (dAX g
NN\ A1 L(AyB) ED
4K gy ( TR 2)) ¢
1 d dAF
_ZnKLdt <(A—1)KE dtCAcF (A_l) L(AAB)D) JFD
1 dAX g dAF p o N
b AD AL L(A AL B) 7EG
AL () R
1 dAP dAF
—ZﬁKL (A 1)K = C'AC d DAD (A—l) L(A (A—l) B)FJMN
1 dA D =i L dA B)D
T AN dt ‘]
1 N AR L dAFA
. A 1 AC A 1 B)D.
KL (A7) & o p (A7) A J

When there are hyperelastic forces derivable from the potential V' depending only on the Green defor-
mation tensor GG, then equations of motion have the following form:

Vak
51—'1111: o _AKC,UK(ANB)C



e Usual (non-vakonomic) constraints and equations of motion

One can show that for the usual (non-vakonomic) constraints of the rotation-free motion the evolution
of the system is given by the symmetric part of the following tensor equation:

A 1 d [, , dA d [, dA] 1 d [, dA]> —
Aly— = AT A— [A dt} A= lA %} JAT A= [A dt} =7,

where
K KM ~7KL K L XrMN
J77 L = J NmrL, N =A MA NN 9

N \ \ 1%
NAB o QO_IAZ'QO_lBjNUa N — g]kQOlMa
©OF

In the explicit form the equations of motion are written as follows:

AP, = PaaPe e (A7) (A7) AP = 3 (4) (4)€ aP),)
T P RPN
b Lapany (AP0 (%) — & (4%) (42)° )
BRI e~ (4s) ()7 47, ) -T2,

The structures of vakonomic and d’Alembert equations are evidently different.




e Solving the above equations of motion:

— solving the symmetric or vakonomic part of our equations of motion, we find A(¢).

— then we substitute it to @ and solving equation

dU N
E—UW

we find U(t).

— finally, substituting it to
p(t) = U()A(t)

we solve the problem, at least in principle.




e Nonlinear vakonomic constraints

In the case when there is no dissipation, calculating Euler-Lagrange equations for the modified La-
grangian L[u] = L + u®F, we obtain the system for the (n + m) variables ¢(t), u®(t) :
d oL 0oL LOFa  d (RIS N
TR - — = =l 7 = NN
ditag¢  o¢ " ag  at \* 8

where p*(t), a =1,...,m, are Lagrange multipliers and F,(q, ¢) = 0.
The reactions forces:
Wb d ( a@Fa> JOF, du®dF, , O°F, d¢? , O°F, d*¢

o\ oy D

~Fog T at 8¢ M agiog at " a¢ag drz

In general, such reactions need not be adiabatic. The equations of constrained motion have the form:

o oo
dt oG  dq

=Di+ R, Fa(q(t),q(t)) = 0.

Nonlinearity of nonholonomic constraints with respect to velocities has a qualitative effect on the
dynamical structure of reactions R; (contains the term with second derivatives). Such acceleration-
dependent forces modify the inertial properties of the object. Besides, nonlinearity of M may influence
the energy balance because, in general, the above reactions R; need not annihilate the velocity vectors.
After calculating the power of the reactions along curves in () compatible with constraints M we obtain

d¢ .dF, d ( ,.0F,
e & _%<”q ag;i)‘




e Nonlinear vakonomic constraints (cont.)

The first term vanishes in virtue of constraints equations, so finally

: d O
Ri 22 2 N a ‘t.l )
q 7 (u ¥ q)

Then the energy balance has the form:

d OF, Y
NS E a-z_l.l :Diw
dt( + 144 aq'z) q

oF,
g’
can be interpreted as the effective energy of the system constrained by the manifold M.

When M is fixed, E[L, M] does not depend on the particular choice of functions F,, used as left-hand
sides of equations of M.

The balanced quantity
BL, M) := B+ u'q'




e Nonlinear vakonomic constraints (cont.)

The quantity E[L, M| contains two parts:

e the natural energy

. OL
ElLl =¢—=— —
[L] 5
of the unconstrained system and
e the energy of constraints
E[M] «Ofa
aq’

In the case with no dissipative forces, the total energy E[L, M] is a constant of motion. The existence
of this constant of motion is just the peculiarity and distinguishing feature of the Hamilton-Lusternik
algorithm.

E[L, M] can be directly obtained from the modified Lusternik Lagrangian L[u]:

L OL[] OF,
E[L[Y] = ¢ = — L[] = E[L] + p* =2 — u°F,,
[Lw]] :== ¢ 2 [u] = E[L] Woad —#

where the last term vanishes on constraints M.
The mechanical work done by Hamilton-Lusternik reactions has a variational structure; it can be
interpreted as the exchange of energy between the system in question and the constraining object.
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The end.

Thank you for your attention!
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