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Symplectic linear algebra

Symplectic vector space
(V , ω0) - real/complex 2n dimensional vector space,
ω0 : V × V → R/C non-degenerate antisymmetric
Symplectic group
Sp(V , ω0) = {A : V → V |ω0(Av ,Aw) =
ω0(v ,w) for each v ,w ∈ V }
Retractable onto U(n) which is of the same homotopy type as S1,
π1(Sp(V , ω0)) = Z.
Possesses a non-universal connected 2-fold covering, the so called
Metaplectic group Mp(V , ω0), λ : Mp(V , ω0)→2:1 Sp(V , ω0)
Universal covering would be infinitely many folded over Sp(V , ω0).



Properties of the SSW representation

Segal-Shale-Weil representation of the metaplectic group.
Inventors:
David Shale (quantization of solutions to the Klein-Gordon
equation)
André Weil in the mid of ’60
Berezin used it at the infinitesimal level
- Underlying vector space L2(Rn)
- ρ0 : Mp(V , ω0)→ U(L2(Rn)) (continuous homomorphism)
- Non-trivial faithful unitary representation of Mp(V , ω0)
- Splits into 2 irreducible representations, odd and even L2

functions on Rn.
- There exists g0 ∈ Mp(V , ω0) such that
ρ0(g0) = F : L2(Rn)→ L2(Rn) (continuous on L2(Rn))



Properties of the SSW-representation

- Similar to the spinor representation of Spin groups - it is also not
a representation of the underlying Sp(V , ω0).
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Symplectic manifolds

Symplectic manifolds
(M, ω) - M manifold, ω non-degenerate differential 2-form and
dω = 0.
Examples:

1) T ∗M, where M is any manifold, ωU =
∑n

i=1 dpi ∧dqi , qi local
coordinates on the manifold, pi coordinates at T(q1,...,qn)M

2) S2 with ω = vol = r2 sinϑdφ ∧ dϑ

3) even dimensional tori ω = dφ1 ∧ dϑ1 + . . .+ dφn ∧ dϑn (in
mechanics: action-angle variables)

4) Kähler manifolds, ω(−,−) = h(−, J−)



Symplectic connections

Darboux theorem: In a neighborhood of any point, one can
choose coordinates in which ω =

∑n
i=1 dq

i ∧ dpi . In Riemannian,
geometry the metric can be transformed into the ”canonical”form
only point-wise - curvature obstruction. Measured by the curvature
tensor. In s.g., due to Darboux theorem, the connection cannot
have such meaning.

Definition: A connection on a symplectic manifold (M, ω)
equipped with a symplectic form ω is called symplectic if ∇ω = 0,
and it is called Fedosov if in addition, it is torsion-free. (Boris
Fedosov)



Metaplectic structure

Symplectic structure
(M, ω) symplectic manifold. At any point m ∈ M, consider the set
Pm = {b = (e1, . . . , e2n)|bis a symplectic basis of (T ∗mM, ωm)}.
P =

⋃
m∈M Pm the space of symplectic repères, p : P → M

(”foot-point”projection).
Metaplectic structure Q
- Formally: (Q,Λ), q : Q → M bundle over M, Λ : Q → P
- At any point, Qm ' Mp(V , ω)
- Compatibility with the symplectic structure:

Q ×Mp(V , ω0)

Λ×λ

��
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Vector bundles

Associated bundles:
At any point - replace Qm by L2(Rn) and do it equivariantly with
respect to the Segal-Shale-Weil representation (in algebraic
geometry called base change). Physics - the (principle) bundle of
repères is replaced by the bundle of observed quantities (elements
of vector spaces). Formally, a notion from differential geometry
- associated bundle:
S = (Q × L2(Rn))/(rg , f ) ∼ (r , ρ0(g)f ), g ∈ Mp(V , ω0)
In this case, introduced by Bertram Kostant: symplectic spinor
bundle
Associated connections:
From a symplectic connection ∇, it is possible to construct the
associated connection ∇S on the sections of the associated
symplectic spinor bundle S → M
Physics: The Fermi-Walker connection is constructed from the
Riemannian connection of the Einstein metric. It trans-
ports the fermions in the classical spinor bundle.



Work of K. Haberemann

Operators generated by symplectic connections
Symplectic Dirac operators:

D : Γ(M,S)→ Γ(M,S), Ds =
2n∑
i=1

ei .∇S
ei
s

(ei .s)(x) = ıx i s(x), (ei+n.s)(x) =
∂s

∂x i
(x) (quantization).

Symplectic Dirac is self-adjoint, its symbol is fiber-wise linear
injective map.
Its associated second order operator P = DD∗ is self-adjoint and
elliptic (elliptic = its symbol is an isomorphism).
But: Kernel of P on S2 = CP1 is infinite dimensional (see
Habermann, Habermann).
Aim: Normalize/repair the theory and restore the classical theory:
Ellipticity =⇒ ”finiteness”of kernels.



Hodge theory for elliptic complexes

Objects:

1) E i → M vector bundles over M, each of finite rank (=
dimension of the fiber over R or C is finite).

2) M compact

3) Di differential operators of finite order (= do ”not
allow”infinitely many differentiating)

4) σ(Di ; ξ) =: σξi : E i → E i , symbol of Di (vector bundle
homomorphism), ξ ∈ T ∗M.

Examples:
symbol of exterior differentiation σξ(di )α = ξ ∧ α
symbol of Laplace-Beltrami operator σξ(4)f = (

∑n
i=1(ξi )

2)f
symbol of the Dolbeault operator σξ(∂)α = ıξ(0,1) ∧ α



Hodge theory for elliptic complexes

Definition: The sequence

0→ Γ(E0,M)
D0→ Γ(E1,M)

D1→ . . .
Dn−1→ Γ(En,M)

is called complex if Di+1Di = 0 for all i .
Definition: For any m ∈ M and any nonzero covector
ξ ∈ T ∗mM \ {0}, the complex

0→ Γ(E0,M)
D0→ Γ(E1,M)

D1→ . . .
Dn−1→ Γ(En,M)

is called elliptic, iff the symbol sequence

0→ E0 σξ
0→ E1 σξ

1→ . . .
σξ
n−1→ En

is exact (kernel of any map is the image of the preceding map).



Hodge theory for elliptic complexes

Definition: Cohomology of the complex is the group (vector
space)

H i (D,C) =
Ker(Di : Γ(E i ,M)→ Γ(E i+1,M))

Im(Di−1 : Γ(E i−1,M)→ Γ(E i ,M))
.

Hodge’s trick: Construct the associated Laplacians
4i = d∗i di + di−1d

∗
i−1 : Γ(M, E i )→ Γ(M, E i )

Theorem (Hodge theory): If the fibers are finite dimensional
(over C/R), then

1) dim(Ker4i ) < +∞
2) Hi (D,C) ' Ker4i

3) H i (D,C) is a norm complete vector topological space (trivial
information if known 1) and 2))

Proof - classically due to W. Hodge (see, e.g., R . O. Wells,
Analysis on complex manifolds, Springer). It is possible to avoid
Hodge star operators; the proof needs to choose an (auxiliary)
Riemannian metric.
Tools: Green operators (= pseudoinverses, i.e, G4− 1 is compact)
for elliptic operators and regularity (=distributional solutions are
automatically smooth) for them.



C ∗-algebras

A associative algebra over C with a norm | | : A→ R+
0 , i.e.,

|ab| ≤ |a||b|
|λa| = |λ||b|
|a| = 0 =⇒ a = 0

is called normed algebra.

Definition: Normed algebra A equipped by involution ∗ : A→ A
such that

|aa∗| = |a||a∗|

is called a C ∗-algebra.
We suppose A contains a unit, 1a = a1 = a (unital C ∗-algebra).
Examples:

1) C0
c (X ), where X is a topological space

2) H a Hilbert space, A := End(H), ∗A := A∗, | | - sup norm

3) Mat(Cn), ∗A = A†, |A| = max{|λ|, λ ∈ spec(A)}



Modules over A

A a unital C ∗-algebra, 1 unit
spec(a) = {λ ∈ C|a− λ1 does not possesses inverse (in A)}
a = a∗ =⇒ spec(a) ⊆ R
A+

0 = {a ∈ A|a = a∗ and spec(a) ⊆ R+
0 } - positive elements.

U a vector space with a left action on A (no continuity supposed)
equipped by (, ) : U × U → A (mimics the Hilbert product) such
that for each u, v ,w ∈ U and r ∈ A

1) (u + rv ,w) = (u,w) + r(u,w)

2) (a.u, v) = a(u, v)

3) (u, v) = (v , u)∗

4) (u, u) ∈ A+
0 and (u, u) = 0 =⇒ u = 0

and such that A 3 a 7→ |(a, a)|1/2 makes U a complete normed
space is called an A-Hilbert module.



A-Hilbert bundles

A-Hilbert bundle = Banach bundle (bundle the fibers of which are
Banach spaces) such that the fibers have the structure a fixed
A-Hilbert module, and the structure group (image of the transition
maps) is a subgroup of the group of AutA(H).

U is finitely generated projective := means U ⊕U⊥ = An, An is the
free-object, n is the upper bound for the number of the generators.
The classical proof of Hodge cannot be used for finitely generated
projective bundles cannot be used. ”Sobolev completions are more
complicated in the infinite rank case.”



Cohomology characterization

(V , ω0) vector space of dimension 2n
(M2n, ω) admits a metaplectic structure P and a flat Fedosov
connection ∇
E i = H ×

∧i V ∗ is a representation of Mp(V , ω0)

ρ(g)(α⊗ s) = λ(g)∗α⊗ ρ0(g)s, g ∈ Mp(V , ω0).

E i = P ×ρ E i - exterior forms with values in the symplectic spinor
bundle
∇ induces ∇S which can be extended to

d∇i : Γ(M, E i )→ Γ(M, E i+1) exterior covariant derivative



Cohomology of the deRham complex twisted by the
SSW-representation

Consider the sequence

0→ Γ(E0,M)
d∇0→ Γ(E1,M)

d∇1→ . . .
d∇n−1→ Γ(En,M)

(deRham complex twisted by the SSW-module.)
Similar to the complex of R. Penrose (deRham tensored by
orthogonal spinors), where higher spin particles occur.
Theorem A: (M, ω) symplectic and ∇ flat connection. Suppose M
is compact, admits a metaplectic structure and the extensions of
the associated Laplacians 4i to the Sobolev completions of the
respective smooth section spaces have closed images. Then each
cohomology group H i (d ,A) is a

1) finitely generated A-module and

2) a normed space

Questions: Can one drop the closeness assumption in certain
cases? Is the cohomology a finitely generated Hilbert A-module?
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