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§1. Kepler Problem (I. Newton, ∼1660)
configuration space: R3

∗ := R3 \ {0}.
equation of motion:

r′′ = − r
r3 . (1)

angular momentum L := r× r′.

L′ = r′ × r′ + r× r′′ = r×
(
− r

r3

)
= 0.

Lenz vector A := L× r′ + r
r .

A′ = L× r′′ +
( r

r

)′
= −(r× r′)× r

r3 +
( r

r

)′
= − r2r′ − rr ′r

r3 +
( r

r

)′
= 0.
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orbits. Since L := r× r′ and A = L× r′ + r
r , L · A = 0

and

L · r = 0, r − A · r = |L|2. (2)

So a non-colliding orbit is a conic with eccentricity e = |A| .
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energy. The energy E := 1
2 |r
′|2 − 1

r can be expressed in terms of
L and A provided that the orbit is non-colliding (i.e., L 6= 0):

E = −1− |A|2

2|L|2
. (3)

Proof.

|A|2 = |L× r′|2 + 1 + 2
r · (L× r′)

r

= |L|2|r′|2 + 1− |L|
2

r
= 2|L|2E + 1.

So E = −1−|A|2
2|L|2 .
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§2. Intrinsic Formulation

angular momentum L := r ∧ r′.

L′ = r′ ∧ r′ + r ∧ r′′ = r ∧
(
− r

r3

)
= 0.

Lenz vector A := r′yL + r
r .

A′ = r′′yL +
( r

r

)′
= −ry(r ∧ r′)

r3 +
( r

r

)′
= − r2r′ − rr ′r

r3 +
( r

r

)′
= 0.

And L ∧ A = 0, L ∧ r = 0, r − A · r = |L|2.

Note that this intrinsic formulation works in any dimension! So, in any
dimension, the Kepler problem exists and its non-colliding orbits are
conics.
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§3. Lightcone Reformulation (G.Meng, 2011)
The non-colliding orbit

L · r = 0, r − A · r = |L|2. (4)

has an attractive lightcone reformulation. Let x = (x0, r) and

l = (0,
L
|L|

), a =
1
|L|2

(1,A). (5)

Then l2 = −1, l · a = 0, a0 > 0. The orbit (4) can be recast as the
intersection of the affine plane

l · x = 0, a · x = 1 (6)

with the future lightcone

x2 = 0, x0 > 0. (7)

In this reformulation, the energy is E = − a2

2a0
.
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Here is the ancient Greek’s original definition of conics:

Question: Is there any relation between the restricted Lorentz group
SO+(1,3) and the orbits?

Answer: Yes, provided that we also include the orbits of the
magnetized companions of the Kepler problem (MICZ-Kepler
problems).
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§4. MICZ Kepler problems

The MICZ-Kepler problem (H. McIntosh and A. Cisneros, D.
Zwanziger, 1960s) with magnetic charge µ ∈ R is a magnetized
version of the Kepler problem with the equation of motion

r′′ = − r
r3 − r′ × µ r

r3 +
µ2

r4 r.

Just as in the Kepler problem, the conserved quantities are

L = r× r′ + µ
r
r
, A = L× r′ +

r
r

and they satisfy relation
L · A = µ.

Geometry, Integrability and Quantization Varna, Bulgaria, June 7 - 12, 2013 (HKUST)The Magnetized Kepler Problems in Odd Dimensions June 7, 2013 8 / 20



§4. MICZ Kepler problems

The MICZ-Kepler problem (H. McIntosh and A. Cisneros, D.
Zwanziger, 1960s) with magnetic charge µ ∈ R is a magnetized
version of the Kepler problem with the equation of motion

r′′ = − r
r3 − r′ × µ r

r3 +
µ2

r4 r.

Just as in the Kepler problem, the conserved quantities are

L = r× r′ + µ
r
r
, A = L× r′ +

r
r

and they satisfy relation
L · A = µ.

Geometry, Integrability and Quantization Varna, Bulgaria, June 7 - 12, 2013 (HKUST)The Magnetized Kepler Problems in Odd Dimensions June 7, 2013 8 / 20



Description of MICZ-Kepler orbits
The Kepler orbits are described by equations

L · r = µr , r − A · r = |L|2 − µ2, (8)

In the light cone formulation, they are described as the intersection of
the future light cone with the affine plane

l · x = 0, a · x = 1. (9)

Here,

l =
1√

|L|2 − µ2
(µ,L), a =

1
|L|2 − µ2 (1,A). (10)

Note that l2 = −1, l · a = 0, a0 > 0, and

E = − a2

2a0
.

Geometry, Integrability and Quantization Varna, Bulgaria, June 7 - 12, 2013 (HKUST)The Magnetized Kepler Problems in Odd Dimensions June 7, 2013 9 / 20



Description of MICZ-Kepler orbits
The Kepler orbits are described by equations

L · r = µr , r − A · r = |L|2 − µ2, (8)

In the light cone formulation, they are described as the intersection of
the future light cone with the affine plane

l · x = 0, a · x = 1. (9)

Here,

l =
1√

|L|2 − µ2
(µ,L), a =

1
|L|2 − µ2 (1,A). (10)

Note that l2 = −1, l · a = 0, a0 > 0, and

E = − a2

2a0
.

Geometry, Integrability and Quantization Varna, Bulgaria, June 7 - 12, 2013 (HKUST)The Magnetized Kepler Problems in Odd Dimensions June 7, 2013 9 / 20



Description of MICZ-Kepler orbits
The Kepler orbits are described by equations

L · r = µr , r − A · r = |L|2 − µ2, (8)

In the light cone formulation, they are described as the intersection of
the future light cone with the affine plane

l · x = 0, a · x = 1. (9)

Here,

l =
1√

|L|2 − µ2
(µ,L), a =

1
|L|2 − µ2 (1,A). (10)

Note that l2 = −1, l · a = 0, a0 > 0, and

E = − a2

2a0
.

Geometry, Integrability and Quantization Varna, Bulgaria, June 7 - 12, 2013 (HKUST)The Magnetized Kepler Problems in Odd Dimensions June 7, 2013 9 / 20



A new perspective =⇒ a new insight.

Theorem
The Lie group SO+(1,3)× R+ acts transitively on both the set of
oriented elliptic MICZ-Kepler orbits and the set of oriented parabolic
MICZ-Kepler orbits.

Remark. The Lightcone formulation suggests that 1) a 2nd temporal
dimension appears naturally, 2) the magnetic charge is relative.
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§5. Generalization to Higher Dimensions

The intrinsic lightcone formulation of the affine plane suggests an
extension of the magnetized Kepler problems to higher dimensions.
However, this extension is not obvious at all, as one can see from the
following facts:

The extension to dimension 5 was done 20 years later, by T. Iwai
in 1990.
For this extension to dimension 5, it was not even clear what the
non-colliding orbits are.
The extension to any other dimension was not believed to be
possible.

Besides the lightcone formulation, we have another clue: an extension
to higher dimensions was carried out at the quantum level, cf. G. W.
Meng, J. Math. Phys. 48, 032105 (2007).
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Magnetized Kepler Problems in Odd Dimensions (G.
W. Meng, 2012)

a) The configuration space Pµ: it fibers over X := R2k+1
∗ , with the fiber

being a certain coadjoint orbit Oµ of G := SO(2k). This principal
G-bundle P → X is the pullback bundle of the principal G-bundle
SO(2k + 1)→ S2k under the map

X → S2k

r 7→ r
r

(11)

The bundle P → X is equipped with a canonical connection, i.e. the
pull back of the connection

Projso(2k)(g
−1 dg)

on SO(2k + 1)→ S2k .
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b) The Equation of Motion. Let E → X be the adjoint bundle of P → X ,
Ω ∈ Γ(∧2T ∗X ⊗ E) be the curvature of the canonical connection. The
equation of motion is{

r′′ = − r
r3 + µ2

k
r
r4 + r′y〈ξ,Ω〉,

Dξ
dt = 0.

(12)

Here ξ is a lifting of the map r: R→ X :

Pµ
ξ ↗

y
R r−→ X

and Dξ
dt is the covariant derivative of ξ.
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Further Elaborations

{
r′′ = − r

r3 + µ2

k
r
r4 + r′y〈ξ,Ω〉,

Dξ
dt = 0.

(13)

〈, 〉 is the pairing of g := so(2k) with its dual g∗.
two-vectors and two-forms are identified via the standard
euclidean structure of R2k+1.
The adjoint orbit Oµ is

G · |µ|√
k

(M1,2 + · · ·+ M2k−3,2k−2 + sign (µ)M2k−1,2k ) (14)

where Mi,j is the element of so(2k) corresponding to the
antisymmetric matrix whose (i , j)-entry is 1, (j , i)-entry is −1, and
all other entries are zero.
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Comments

Case k = 1. They are the MICZ Kepler problems discovered by D.
Zwanziger, and independently by H. McIntosh and A. Cisneros in
the end of 1960s.
Case k = 2. They are the SU(2)-Kepler problems found by T. Iwai
in 1990.
All other cases were not expected.

The energy E = 1
2 |r
′|2 + µ2/k

2r2 − 1
r .

the angular momentum L = r ∧ r′ + r2〈ξ,Ω〉.
the Lenz vector A = r′yL + r

r .

E = − 1−|A|2
2(|L|2−µ2)

.
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Case k = 2. They are the SU(2)-Kepler problems found by T. Iwai
in 1990.
All other cases were not expected.

The energy E = 1
2 |r
′|2 + µ2/k

2r2 − 1
r .

the angular momentum L = r ∧ r′ + r2〈ξ,Ω〉.
the Lenz vector A = r′yL + r

r .

E = − 1−|A|2
2(|L|2−µ2)

.
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Non-colliding Orbits and Lorentz Transformations (Z.
Q. Bai, G. W. Meng and E. X. Wang, 2013)

To understand an orbit inside Pµ, we need to understand its projection
onto X := R2k+1

∗ and then take a lift via the connection. The projection
of an orbit, if it is non-colliding, shall be referred to as a MICZ-Kepler
orbit. Here are a few known facts prior to our investigation:

In dimension 3, the MICZ-Kepler orbits are conics and the elliptic
(parabolic reps.) ones are transformed to each other via Lorentz
and scaling transformations.
In any dimension, the MICZ-Kepler orbits are conics if the
magnetic charge is zero.
In any dimension, the MICZ-Kepler orbits must be conics if they
are transformed to each other via Lorentz and scaling
transformations.
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It turns out that, in any dimension, the MICZ-Kepler orbits are conics,
and the elliptic (parabolic reps.) ones are transformed to each other via
Lorentz and scaling transformations.

Theorem (Z.Q. Bai, G.W. Meng and E.X. Wang, 2013)
For the magnetized Kepler problems in dimension 2k + 1, a
MICZ-Kepler orbit is an ellipse, a parabola, and a branch of a
hyperbola according as the energy is negative, zero, and positive.
Moreover, SO+(1,2k + 1)× R+ acts transitively on both the set of
oriented elliptic orbits and the set of oriented parabolic orbits.

Remark.
The proof is not obvious.
The key is to find the effective angular momentum L̄ out of A and
L, such that L̄ is a decomposable 2-vector which becomes L if the
dimension is 3 or the magnetic charge is 0.
the Lenz vector A and the effective angular momentum L̄ together
determine the MICZ-Kepler orbit.
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Sketch proof

Proof.
With the help of L̄ and A, again one has a lightcone formulation for the
MICZ-Kepler orbits: each is the intersection of the future lightcone with
an affine plane

m ∧ x = 0, a · x = 1 (15)

in R1,2k+1. Here, m is a decomposable 3-vector in the Lorentz space
R1,2k+1 such that (m,m) = 1, and a = (a0,a) is a vector in the Lorentz
space R1,2k+1 with a0 > 0 and a ∧m = 0. In fact, in terms of L̄ and
A := (1,A) = e0 + A, we have

m =
L̄ ∧ A
|L̄ ∧ A|

, a =
A

|L̄ ∧ A|2
.
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Let us summarize this talk with a diagram.

Kepler Problem

Intrinsic
Formulation

=⇒ Higher Dim. KP

lightcone
Formulation

y y lightcone
Formulation

MICZ KP

Intrinsic
Formulation
−→ Higher Dim. Magnetized KP
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Thanks!
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