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Hamiltonian Dynamical Systems Quantum Dynamical Systems

• Symplectic manifold (M, ω) • H — Hilbert space

• Hamiltonian flow σt : M //M • Unitary flow Ut = e itF̂

• defined by Hamilton equation where F̂ — a selfadjoint operator

Xxω = dF , F̂ : D(F̂ ) //H
where F ∈ C∞(M,R) and unbounded in general
X ∈ Γ∞(M,TM)
is tangent to {σ}t∈R.

quantization

Hamiltonian =⇒ Quantum
Dynamical Dynamical

System ⇐= System
dequantization



Example

(H, e itF̂ , F̂ : D(F̂ ) //H) =⇒ (M, ω,F )

F̂ =
∫
λdE (λ) — selfadjoint operator with semisimple spectrum

Thus
• H ∼= L2(R, dσ) where dσ(λ) = 〈0|dE (λ)|0〉 and |0〉 — cyclic for
F̂
• |n〉 := Pn(F̂ )|0〉, n = 0, 1, . . . — orthonormal basis in H, where
Pn — orthogonal polynomials with respect to dσ



We assume the condition

lim sup
n //∞

n
√
|µ|n
n

< +∞

on the absolute moments

|µ|n :=

∫
R
|ω|ndσ(ω) =

1

P2
0

〈0| |F̂ | |0〉

of the operator F̂ .



Then, there exists the open strip Σ ⊂ C in complex plane C, which
is invariant under the translations

τtz := z + t

t ∈ R and such that the characteristic functions

χ(s) =

∫
R

e−iωsdσ(ω),

s ∈ R, of the measure dσ posses holomorphic prolongation χΣ on
Σ.



Hence, one has the positive definite kernel on Σ

KΣ(z̄ , v) := χΣ(z̄ − v).

The map KΣ : Σ //H ∼= B(C,H) defined by

KΣ(z) :=
∞∑
n=0

χn(z)|n〉

where

χn(z) :=

∫
e−izωPn(ω)dσ(ω),

for z ∈ Σ, gives factorization

KΣ(z̄ , v) = KΣ(z)∗KΣ(v)

of the kernel KΣ.



One has
e−itF̂KΣ(z) = KΣ(z + t).

The states KΣ(z), z ∈ Z, span an essential domain D(F̂ ) of F̂ and

F̂KΣ(z) = i
d

dz
KΣ(z).

The function
F = (log ◦χΣ)′(z̄ − z).

and the vector field tangent to the translation flow τ(t)

X =
∂

∂z
+

∂

∂z̄

satisfy
XxΩΣ = dF

for symplectic form

ΩΣ = i∂∂̄(log ◦KΣ)(z̄ , z) = i(log ◦χΣ)′′(z̄ − z)dz̄ ∧ dz .



Applying the geometric quantization to Hamiltonian system
(M = Σ, ω = ΩΣ,F ) we back to the initial quantum system

(H, e itF̂ , F̂ : D(F̂ ) //H).

geometric
quantization

(M = Σ, ω = ΩΣ,F ) =⇒ (H, e itF̂ , F̂ : D(F̂ ) //H)



Positive definite kernels on the principal bundles

• P — a set
• V and H — Hilbert spaces
• B(V ,H) — Banach space of bounded linear operators from V
into H
(i) The B(V )-valued positive definite kernels, i.e. maps
K : P × P → B(V ) such that for any finite sequences
p1, . . . , pJ ∈ P and v1, . . . , vJ ∈ V one has

J∑
i ,j=1

〈vi ,K (pi , pj)vj〉 = 0,

where 〈·, ·〉 denotes the scalar product in V .
One has

K (q, p) = K (p, q)∗

for each q, p ∈ P.



(ii) The maps K : P → B(V ,H) satisfying the condition

{K(p)v : p ∈ P and v ∈ V }⊥ = {0}.

(iii) The Hilbert spaces K ⊂ V P realized by the functions
f : P → V such that evaluation functionals

Epf := f (p)

are continuous maps of Hilbert spaces Ep : K → V for every p ∈ P.



There exist functorial equivalences between the categories of the
object defined above.
• Equivalence between (ii) and (iii) is given as follows. For
K : P → B(V ,H) we define monomorphism of vector spaces
J : H → V P by

J(ψ)(p) := K(p)∗ψ,

and
K(p) := E ∗p ,

where ψ ∈ H, p ∈ P.
• The passage from (ii) to (i) is given by

K (q, p) := K(q)∗K(p).

• In order to show the implication (i) ⇒ (iii) let us take vector
subspace K0 ⊂ V P consisting of the following functions

f (p) :=
I∑

i=1

K (p, pi )vi ,

defined for the finite sequences p1, . . . , pI ∈ P and v1, . . . , vI ∈ V .



Due to positive definiteness of the kernel K : P × P → B(V ) we
define a scalar product between g(·) =

∑J
j=1 K (·, qj)wj ∈ K0 and

f ∈ K0 as follows

〈g |f 〉 :=
I∑

i=1

J∑
j=1

〈K (pi , qj)wj , vi 〉.

We obtain K ⊂ V P as a closure of K0 with respect to the norm
given by the above scalar product.



Proposition

Let P be a smooth manifold and V a finite dimensional complex
Hilbert space. Then the following properities are equivalent:

(a) The positive definite kernel K : P × P → B(V ) is a smooth
map.

(b) The map K : P → B(V ,H) is smooth.

(c) The Hilbert space K ⊂ V P defined in (iii) consists of smooth
functions, i.e. K ⊂ C∞(P,V ).



From now let us assume that P is a principal bundle

M

GG P// P

M

π
��

over the smooth manifold M with some Lie group G as the
structural group. Additionally we introduce a faithful
representation of G

T : G −→ Aut(V )

in Hilbert space V and suppose that positive definite kernel
K : P × P → B(V ) has equivariance property

K (p, qg) = K (p, q)T (g)

where p, q ∈ P and g ∈ G . This property is equivalent to each of
the following two properties

K(pg) = K(p)T (g)

and
f (pg) = T (g−1)f (p)

for f ∈ K.



Using the action of G on P × V defined by

P × V 3 (p, v) 7→ (pg ,T (g−1)v) ∈ P × V

one obtains the T -associated vector bundle

M

VV V// V

M

π̃
��

over M with the quotient manifold V := (P × V )/G as its total
space.



Given π(p) = m, π(q) = n, we define by

KT (m, n)([(p, v)], [(q,w)]) := 〈v ,K (p, q)w〉,

the section
KT : M ×M −→ pr∗1V

∗ ⊗ pr∗2V∗

of the bundle pr∗1V
∗ ⊗ pr∗2V∗ → M ×M.

The diagonal KT |∆ of the kernel KT determines positive
semi-definite hermitian structure HK := KT |∆ on the bundle
π̃ : V→ M.



One has I : H → C∞(M,V) a linear monomorphism of vector
spaces defined by

I (ψ)(π(p)) := [(p,K(p)∗ψ)] = [(p, J(ψ)(p))].

Apart of hermitian structure HK the positive hermitian kernel K
defines on P a B(V )-valued differential one-form

ϑ(p) := (K(p)∗K(p))−1K(p)∗dK(p) = K (p, p)−1dqK (p, q)|q=p,

which satisfy
ϑ(pg) = T (g−1)ϑ(p)T (g)

and

〈v ,K (p, p)ϑ(p)w〉+ 〈ϑ(p)v ,K (p, p)w〉 = d〈v ,K (p, p)w〉.

Thus we conclude that ϑ ∈ C∞(P,T ∗P ⊗ B(V )) is the one-form
of the metric connection ∇K consistent with the hermitian
structure HK .



One-parameter groups of automorphisms and
prequantization

Let ξ ∈ C∞(P,TP) be the vector field tangent to the flow of
authomorphisms τ : (R,+)→ Aut(P, ϑ) of the principal bundle

τt(pg) = τt(p)g ,

where g ∈ G and p ∈ P, which preserve the connection form ϑ

τ∗t ϑ = ϑ.

Then one has
ξ(pg) = DRg (p)ξ(p),

and
Lξϑ = 0,

where Rg (p) := pg , DRg (p) is the derivative of Rg at p and Lξ is
Lie derivative with respect to ξ.



The space of vector fields preserving connection we denoted by
E0
G ⊂ C∞G (P,TP).

For connection 1-form ϑ and the DT (e)(g)-valued pseudotensorial
0-form, i.e. DT (e)(g)-valued function such that

F (pg) = T (g−1)F (p)T (g),

one has

Ω := Dϑ = dϑ+
1

2
[ϑ, ϑ],

DF = dF + [ϑ,F ].



C∞G (P,DT (e)(g)) — the space of DT (e)(g)-valued functions
satisfying equivariance condition
Now let us investigate the Lie algebra PG which consists of pairs
(F , ξ) ∈ C∞G (P,DT (e)(g))× C∞G (P,TP) such that

ξxΩ = DF ⇐⇒ Lξϑ = D(F + ϑ(ξ))

with the bracket [[·, ·]] : PG × PG → PG defined for
(F , ξ), (G , η) ∈ PG by

[[(F , ξ), (G , η)]] := ({F ,G}, [ξ, η]),

where

{F ,G} := 2Ω(ξ, η) + DG (ξ)−DF (η) + [F ,G ] =

= −2Ω(ξ, η) + [F ,G ] = DG (ξ) + [F ,G ]

and [ξ, η] is the commutator of vector fields.



• Let EG be the Lie algebra of vector fields ξ ∈ C∞G (P,TP) for
which exists F ∈ C∞G (P,DT (e)(g)) such that (F , ξ) ∈ PG .

• Denote by NG the set of F ∈ C∞G (P,DT (e)(g)) such that
DF = 0.

• The subspace P0
G ⊂ PG of such elements (F , ξ) ∈ PG that

ξ ∈ E0
G and F = F0 − ϑ(ξ), where DF0 = 0.

Summing up we have

0 → NG
ι1−→ PG

pr2−−→ EG → 0,
↑ ↑ ↑

0 → NG
ι1−→ P0

G

pr2−−→ E0
G → 0,

where horizontal arrows form the exact sequences of Lie algebras
and vertical arrows are Lie algebra monomorphisms.

ι1(F ) := (F , 0), pr2(F , ξ) := ξ.



From now on we will assume that M is a connected manifold and
denote by P(p) the set of elements of P which one can join with p
by curves horizontal with respect to the connection ϑ. By G (p) we
denote the subgroup G (p) ⊂ G consisting of those g ∈ G for
which pg ∈ P(p), i.e. G (p) is the holonomy group based at p. Let
us recall that for connected base manifold M all holonomy groups
G (p) and their Lie algebras g(p) are conjugated in G and g,
respectively. Recall also that Lie algebra g(p) is generated by
Ωp′(X (p′),Y (p′)), where p′ ∈ P(p) and X (p′),Y (p′) ∈ Tp′P.
After these preliminary remarks we conclude that for (F , ξ) ∈ PG
the function F takes values F (p′) in g(p) if p′ ∈ P(p). In the
special case if F ∈ NG , i.e. when DF = 0, function F is constant
on P(p) and F (p) ∈ DT (e)(g(p)) ∩ DT (e)(g′(p)), where g′(p) is
the centralizer of the Lie subalgebra g(p) in g.



In order to describe the Lie algebra P0
G we define the linear

monomorphism Φ : E0
G → P0

G of Lie algebras by

Φ(ξ) := (−ϑ(ξ), ξ).

One has the decomposition

P0
G = ι1(NG )⊕ Φ(E0

G )

of P0
G into the direct sum of Lie subalgebra Φ(E0

G ) and ideal
ι1(NG ) of central elements of P0

G .



Now let us define the following Lie subalgebra

H0
G := Dπ(E0

G ),

of C∞(M,TM), where Dπ : TP → TM is the tangent map of the
bundle map π : P → M.
We define the vector subspace F0

G ⊂ C∞G (P,DT (e)(g))×H0
G

consisting of such elements (F ,X ) ∈ C∞G (P,DT (e)(g))×H0
G

which satisfy the condition (Hamilton equation)

X ∗xΩ = DF ,

where X ∗ is the horizontal lift of X with respect to ϑ.
One has

ξ = X ∗ − F ∗ ∈ E0
G ,

where F ∗ is a vertical field defined by the function
F ∈ C∞G (P,DT (e)(g))



Proposition

One has the Lie algebras isomorphism between (E0
G , [·, ·]) and

(F0
G , {{·, ·}}), where the Lie bracket of (F ,X ), (G ,Y ) ∈ F0

G is
defined by

{{(F ,X ), (G ,Y )}} := (−2Ω(X ∗,Y ∗) + [F ,G ], [X ,Y ]).

The following exact sequence of Lie algebras has place

0→ NG
ι1−→ F0

G
pr2−−→ H0

G → 0,

where ι1(F ) := (F , 0) and pr2(F ,X ) := X .



The integration of the horizontal part ξh = X ∗ of ξ ∈ E0
G gives the

flow {τht }t∈R being the horizontal lift of the flow

σ : (R,+) −→ Diff(M)

defined by the projection of {τt}t∈R on the base M of the principal
bundle P. The vector field X ∈ H0

G is the velocity vector field of
{σt}t∈R.



The flow
τ̃t [(p, v)] := [(τt(p), v)]

defines

(Σ̃tψ)(π(p)) := τ̃tψ(σ−t◦π(p)) = τ̃tψ(π(τ−t(p))) = τ̃tψ(π(τh−t(p))),

where ψ ∈ C∞(M,V).
The generator Q(F ,X ) of the one parameter group Σ̃t is G -version
of Kostant–Souriau prequantization operator

Q(F ,X ) := −(∇X + F̃ ),

where (F ,X ) ∈ F0
G and

F̃ ([(p, v)]) := [(p,F (p)v)].



For
Q : F0

G −→ End(C∞(M,V))

one has prequantization property

[Q(F ,X ),Q(G ,Y )] = Q{{(F ,X ),(G ,Y )}}.

In the non-degenerate case, i.e. when (F ,X ) is defined by F we
have

[QF ,QG ] = Q{F ,G},

where QF := Q(F ,XF ) and the bracket {F ,G} is defined by

{F ,G} := −2Ω(X ∗F ,Y
∗
G ) + [F ,G ].



Quantization

We will quantize those flows which preserve B(V )-valued positive
definite kernel K

K (τt(p), τt(q)) = K (p, q), for p, q ∈ P and t ∈ R

i.e. {τt}t∈R ⊂ Aut(P,K ) ⊂ Aut(P, ϑ)

Theorem
The flow {τt}t∈R ⊂ Aut(P,K ) if and only if there exists an unitary
flow Ut : H → H on the Hilbert space H such that

K(τt(p)) = UtK(p),

where the map K : P → B(V ,H) satisfies conditions of the
definition (ii) and factorizes the kernel K (p, q) = K(p)∗K(q).
The unitary flow {Ut}t∈R is defined by {τt}t∈R in a unique way.



Theorem
The vector space H0 := span{K(p)(v), p ∈ P, v ∈ V } is the
essential domain of the generator F̂ , where F̂ is generator of

Ut = e itF̂ .
One has the filtration

U0 ⊂ U1 ⊂ . . . ⊂ U∞ ⊂ D(F̂ )

of the domain D(F̂ ) of the operator F̂ onto its essential domains,
where

Ul := Ul−1 + F̂ (Ul−1), U0 := H0.

This filtration is preserved by the flow {Ut}t∈R. Moreover

F̂Ul ⊂ Ul+1

and
U∞ ⊂ D(F̂ l),

for l ∈ N ∪ {0}.



The following relations are valid

Ut = I−1 ◦ Σ̃t ◦ I

and
F̂ = iI−1 ◦ Q(F ,X ) ◦ I .

One also has

F (p) = i(K(p)∗K(p)−1K∗(p)F̂K(p).



For the further investigation of F̂ we will describe its
representation in a trivialization

sα : Ωα → P, π ◦ sα = idΩα

of π : P → M, where
⋃
α∈A Ωα = M is a covering of M by the

open subsets.
We note that on π−1(Ωα) one has

Ω(p) = T (h−1)

(
dϑα(m) +

1

2
[ϑα(m), ϑα(m)]

)
T (h),

DF (p) = T (h−1) (dFα(m) + [ϑα(m),Fα(m)]) T (h),

for p = sα(m)h, where

ϑα := s∗αϑ and Fα := F ◦ sα.



We find that for ξ = X ∗ − F ∗ ∈ E0
G and for ϕα := Fα + ϑα(X ) we

have
LXϑα = dϕα + [ϑα, ϕα].

The positive definite kernel K : P × P → B(V ) in the trivialization
is described by

Kα(m) := K ◦ sα(m),

Kαβ(m, n) := K∗α(m)Kβ(n),

for m ∈ Ωα and n ∈ Ωβ and connection form by

ϑα(m) = (Kα(m)∗Kα(m))−1 Kα(m)∗dKα(m).



We find that

i F̂Kα(m)v = (XKα)(m)v + Kα(m)ϕα(m)v , (1)

where v ∈ V , m ∈ Ωα.

The selfadjointess of F̂ implies the following relation

Kβ(n)∗(XKα)(m)+(XKβ)(n)∗Kα(m)+Kβ(n)∗Kα(m)ϕα(m)+ϕβ(n)∗Kβ(n)∗Kα(m) ≡ 0

between the kernel map Kα : Ωα → B(V ,H) and (F ,X ) ∈ F0
G .



In the sα-gauge section I (ψ) ∈ C∞(M,V) and Q(F ,X )I (ψ) are
given by

I (ψ)(m) = [(sα(m),K∗α(m)Kβ(n)v)]

and by

(Q(F ,X )I (ψ))(m) = iI (F̂ψ)(m) = [(sα(m),K∗α(m)F̂Kβ(n)v)]

respectively, m ∈ Ωα. Hence we obtain the expression on Q(F ,X ) in
terms of the kernel Kᾱβ(m, n):

Q(F ,X )(Kᾱβ(·, n))(m)v = −(XKᾱβ)(·, n)(m)v−φα(m)∗Kᾱβ(m, n)v .
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A.O., M. Świȩtochowski, ”Coherent states map for
MIC-Kepler system”, J. Math. Phys. 38(10), 1997

M. Horowski, A.O., ”Geometry of the Kepler System in
Coherent States Approach”, Ann. Inst. Henri Poincaré, Vol.
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