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Hamiltonian Dynamical Systems

Quantum Dynamical Systems

e Symplectic manifold (M, w)

e Hamiltonian flow 0y : M — M
e defined by Hamilton equation
Xiw = dF,

where F € C*°(M,R) and

X eTr(M, TM)

is tangent to {o}ier.

e 7{ — Hilbert space
e Unitary flow U; = eitf

where F — a selfadjoint operator
F.DFy—H

unbounded in general

quantization
Hamiltonian — Quantum
Dynamical Dynamical
System — System

dequantization



Example

(H, e F: D(F)—=H) = (M,w, F)

F= J AdE(X) — selfadjoint operator with semisimple spectrum

Thus

o H = [?(R,do) where do()\) = (0|dE())|0) and |0) — cyclic for
F

e [n) := P,(F)|0), n=0,1,... — orthonormal basis in #, where

P, — orthogonal polynomials with respect to do



We assume the condition

|- \/n |/’I’|’7
imsup ————

n——s-00 n

< 400
on the absolute moments

il = /R w|"do(w) = —3<0| 1| (o)

of the operator F.



Then, there exists the open strip ¥ C C in complex plane C, which
is invariant under the translations

T+Z . —Z+t

t € R and such that the characteristic functions
x(s) = / e~ 4 (w),
R

s € R, of the measure do posses holomorphic prolongation xy on
2.



Hence, one has the positive definite kernel on

Ks(z,v) == xs=(z — v).

The map Ry : ¥ —=H = B(C,H) defined by
f(2) =Y xn(2)|n)
n=0

where
Xn(z) = /e_iZ“P,,(w)da(w),
for z € ¥, gives factorization
Ks(z,v) = Rx(2)"8x(v)

of the kernel Ks-.



One has .
e_'tF.ﬁ):(Z) = ﬁz(z + t).

The states Ry (z), z € Z, span an essential domain D(F) of F and

A .d
FRy(z) = ’Eﬁz(z)'

The function
F = (logoxs)'(z — 2).

and the vector field tangent to the translation flow 7(t)

)
X=5: "o

satisfy
X.Qy = dF

for symplectic form

Qs = i09(log oKx)(z,z) = i(log oxs)"(Z — z)dZ A dz.



Applying the geometric quantization to Hamiltonian system
(M =X%X,w=Qy, F) we back to the initial quantum system

(H,e"tﬁ,lt_ - D(F)—H).

geometric
quantization

(M=Y%,w=Qs,F) — (H,e'tF F: D(F)—H)



Positive definite kernels on the principal bundles

o P — aset

e V and H — Hilbert spaces

e 3(V,H) — Banach space of bounded linear operators from V
into H

(i) The B(V)-valued positive definite kernels, i.e. maps

K : P x P — B(V) such that for any finite sequences

p1,---,ps € Pand vi,...,v; € V one has

J

> vi. K(pi, py)vi) Z 0,

ij=1

where (-, -) denotes the scalar product in V.
One has

K(q,p) = K(p,q)"
for each q,p € P.



(ii) The maps 8 : P — B(V,H) satisfying the condition
{R(p)v:p € P and ve VIt =1{0}

(iii) The Hilbert spaces K C V' realized by the functions
f : P — V such that evaluation functionals

Epf == f(p)

are continuous maps of Hilbert spaces £, : K — V for every p € P.



There exist functorial equivalences between the categories of the
object defined above.
e Equivalence between (ii) and (iii) is given as follows. For
R: P — B(V,H) we define monomorphism of vector spaces
J:H — VP by

J(¥)(p) := R(p)" ¢,
and

R(p) = Ep,

where v € H, p € P.
e The passage from (ii) to (i) is given by

K(aq,p) := 8R(q)"R(p).

e In order to show the implication (i) = (iii) let us take vector
subspace Ko C V' consisting of the following functions

/
Z K P, pl Vi,
i=1

defined for the finite sequences p1,...,p; € P and vy,...,v; € V.



Due to positive definiteness of the kernel K : P x P — B(V) we
define a scalar product between g(-) = Zle K(-,qj)w; € Ko and
f € Kg as follows

I J

(&lf) == > (K(pi, qj)wj, vi)-

i=1 j=1

We obtain K C V' as a closure of K with respect to the norm
given by the above scalar product.



Proposition

Let P be a smooth manifold and V' a finite dimensional complex

Hilbert space. Then the following properities are equivalent:

(a) The positive definite kernel K : P x P — B(V) is a smooth
map.

(b) The map 8: P — B(V,H) is smooth.

(c) The Hilbert space IC C VP defined in (iii) consists of smooth
functions, i.e. K C C*(P, V).



From now let us assume that P is a principal bundle
G—P

,\i;

over the smooth manifold M with some Lie group G as the
structural group. Additionally we introduce a faithful
representation of G

T:G— Aut(V)

in Hilbert space V' and suppose that positive definite kernel
K : P x P — B(V) has equivariance property

K(p.qg) = K(p,q)T(g)

where p,q € P and g € G. This property is equivalent to each of
the following two properties

R(pg) = K(p)T(g)
and

f(pg) = T(g " )f(p)
for f € IC.



Using the action of G on P x V defined by
PxV3(p,v)—(pg, T(g ")) e PxV
one obtains the T-associated vector bundle

V—YV

|7

M

over M with the quotient manifold V := (P x V)/G as its total
space.



Given w(p) = m, w(q) = n, we define by

Kr(m, n)([(p, v)],[(q, w)]) := (v, K(p, q)w),

the section B
Kr:Mx M —s priV" @ priV*

of the bundle priV" @ priV* — M x M.
The diagonal K |a of the kernel K7 determines positive

semi-definite hermitian structure Hy := K75 on the bundle
T:V— M.



One has | : H — C*>°(M, V) a linear monomorphism of vector
spaces defined by

1) (7(p)) == [(p, R(P)"¥)] = (P, J(¥)(P))]-

Apart of hermitian structure Hy the positive hermitian kernel K
defines on P a B(V)-valued differential one-form

9(p) == (R(p)*R(p)) ' R(p)*d&(p) = K(p, p) "doK (P, q)|q=p

which satisfy
9(pg) = T(g " )I(p)T(g)

and

(v,K(p, p)d(p)w) + (I(p)v, K(p, p)w) = d{v,K(p, p)w).

Thus we conclude that ¢ € C*°(P, T*P ® B(V)) is the one-form
of the metric connection V consistent with the hermitian
structure Hg.



One-parameter groups of automorphisms and
prequantization

Let & € C°(P, TP) be the vector field tangent to the flow of
authomorphisms 7 : (R, +) — Aut(P, ) of the principal bundle

7(pg) = 1t(p)g,

where g € G and p € P, which preserve the connection form ¢
0 =1.

Then one has
¢(pg) = DRg(p)¢(p),

and
LeY =0,

where Rg(p) := pg, DR, (p) is the derivative of R, at p and L¢ is
Lie derivative with respect to £.



The space of vector fields preserving connection we denoted by
EL C CZ(P, TP).

For connection 1-form ¢ and the DT (e)(g)-valued pseudotensorial
0-form, i.e. DT(e)(g)-valued function such that

F(pg) = T(g " )F(p)T(g),

one has 1
Q:=DY=d9+ 5[19,19],

DF = dF + [, F].



CZ(P,DT(e)(g)) — the space of DT (e)(g)-valued functions
satisfying equivariance condition

Now let us investigate the Lie algebra P which consists of pairs
(F,§) € CZ(P,DT(e)(g)) x CZ(P, TP) such that

§Q=DF <<= LI =D(F+9()

with the bracket [, -] : P x Pc — P defined for
(F7£)7(G777) € PG by

[(F.€),(G.n)] = ({F, G} [ ),
where

{F,G}=20(¢,n) +DG(§) — DF(n) + [F, G] =
= _29(5777) + [F7 G] = DG(f) + [F7 G]

and [¢, n] is the commutator of vector fields.



o Let £ be the Lie algebra of vector fields & € CZ°(P, TP) for
which exists F € CZ(P, DT (e)(g)) such that (F,&) € Pg.

e Denote by N the set of F € CZ°(P, DT (e)(g)) such that
DF =0.

e The subspace P2 C Pg of such elements (F,&) € Pg that
£ €& and F = Fy — (&), where DFg = 0.

Summing up we have

.
0—>NGL—1>PGP—2>5G—>O,
T T T
I
0 — N & P2 2 g0 5 o
where horizontal arrows form the exact sequences of Lie algebras
and vertical arrows are Lie algebra monomorphisms.

t1i(F) :=(F,0), pr(F,&):=¢.



From now on we will assume that M is a connected manifold and
denote by P(p) the set of elements of P which one can join with p
by curves horizontal with respect to the connection ¥. By G(p) we
denote the subgroup G(p) C G consisting of those g € G for
which pg € P(p), i.e. G(p) is the holonomy group based at p. Let
us recall that for connected base manifold M all holonomy groups
G(p) and their Lie algebras g(p) are conjugated in G and g,
respectively. Recall also that Lie algebra g(p) is generated by
Qu(X(p'), Y(P')), where p’ € P(p) and X(p'), Y(p') € Ty P.
After these preliminary remarks we conclude that for (F,¢) € Pg
the function F takes values F(p’) in g(p) if p’ € P(p). In the
special case if F € Ng, i.e. when DF = 0, function F is constant
on P(p) and F(p) € DT (e)(g(p)) N DT (e)(g'(p)), where g'(p) is
the centralizer of the Lie subalgebra g(p) in g.



In order to describe the Lie algebra 73?; we define the linear
monomorphism ¢ : 5?; — 73% of Lie algebras by

®(&) = (=9(),9)-

One has the decomposition
73?; =11(Ng) ® d)(gg)

of P2 into the direct sum of Lie subalgebra ®(£2) and ideal
11(Ng) of central elements of P2.



Now let us define the following Lie subalgebra
H = Dr(£2),

of C>°(M, TM), where Dm : TP — TM is the tangent map of the
bundle map 7 : P — M.

We define the vector subspace 72 C CZ(P, DT (e)(g)) x HZ
consisting of such elements (F, X) € C(P,DT(e)(g)) x H%
which satisfy the condition (Hamilton equation)

X*.Q = DF,

where X* is the horizontal lift of X with respect to 1.
One has
E=X*"—F*cé&,

where F* is a vertical field defined by the function
F e C&(P,DT(e)(g))



Proposition

One has the Lie algebras isomorphism between (£2,[-,]) and
(F2, {-,-}), where the Lie bracket of (F,X),(G,Y) € F2 is
defined by

{(F, X), (G, Y)} = (—2Q(X*, Y*") + [F, G|, [X, Y]).
The following exact sequence of Lie algebras has place
0 Ng 2 F2 2290 o,

where 11(F) := (F,0) and pra(F, X) := X.



The integration of the horizontal part £/ = X* of ¢ € 58 gives the
flow {7/} +cr being the horizontal lift of the flow

o: (R,+) — Diff(M)

defined by the projection of {7:}+cr on the base M of the principal
bundle P. The vector field X € ’H% is the velocity vector field of

{Ut}teR-



The flow
7e[(p, v)] := [(¢(p), v)]

defines
(Xeth)(m(p)) := Fevo(o—rom(p)) = Fetp(m(7—e(p))) = Ferb(w (7" (p))),

where 1) € C*(M, V). N
The generator Q(F x) of the one parameter group ¥ is G-version
of Kostant—Souriau prequantization operator

Qe x) = —(Vx + F),

where (F, X) € F2 and

F([(p, V)]) := [(p, F(P)V)]-



For
Q: F& — End(C®(M,V))

one has prequantization property
[QF.x), Qv = QuF.x).(6.v)3-

In the non-degenerate case, i.e. when (F, X) is defined by F we
have

[QF, Qc] = Q¢F.6)>
where QF := Q(F x) and the bracket {F, G} is defined by

{F,G} = =2Q(Xg, Y¢) + [F, G].



Quantization

We will quantize those flows which preserve B(V/)-valued positive
definite kernel K

K(7t(p),7t(q)) = K(p,q),  for p,ge Pand t € R

i.e. {Tt}tG]R C 1AL113(P7 K) C Aut(P,ﬁ)

Theorem
The flow {1t }ter C Aut(P, K) if and only if there exists an unitary
flow U; : H — H on the Hilbert space H such that

R(re(p)) = UtK(p),

where the map & : P — B(V,H) satisfies conditions of the
definition (ii) and factorizes the kernel K(p, q) = R(p)*£R(q).
The unitary flow {U;}icr is defined by {7¢}ter in a unique way.



Theorem

The vector space Ho := span{R(p)(v),p € P,v € V} is the
essential domain of the generator F, where F is generator of
Ut — e,itl:—'

One has the filtration

Uy CUL C ... CUs C D(F)

of the domain D(I?) of the operator F onto its essential domains,
where

U= Uiy + FUi—1), Uy = Ho.
This filtration is preserved by the flow {U;}icr. Moreover
//':U/ C U/.H

and R
Uy C D(F,

for | € NU {0}.



The following relations are valid
U=110 ft ol

and R
F=il""oQrxyol

One also has

F(p) = i(R(p)*&(p) "R (p)FA(p)-



For the further investigation of F we will describe its
representation in a trivialization

S Qo = P, mos, =idg,

of m: P — M, where |, Qa0 = M is a covering of M by the
open subsets.
We note that on m~1(Q,) one has

0(p) = T() (d0am) + 3 [0a(m),va(m)]) T0),

DF(p) = T(h™) (dFa(m) + [Ja(m), Fa(m)]) T(h),
for p = s,(m)h, where

Vo =50 and F,:=F os,.



We find that for £ = X* — F* ¢ Sg and for o 1= Fo + U (X) we
have

£X19a = dSOa + ["9047 Soa]-

The positive definite kernel K : P x P — B(V) in the trivialization
is described by

Ra(m) == Rosa(m),
Kap(m, n) = K,(m)Rs(n),

for m € Q, and n € Qg and connection form by

Ja(m) = (Ra(m)*Ka(m)) ™! Ka(m)*dRa(m).



We find that

iFRa(m)v = (XKa)(m)v + Ra(m)pa(m)v, (1)
where v e V, me Q,.
The selfadjointess of F implies the following relation
Rp(n)*(XRa)(m)+(XKp)(n)" Ra(m)+Rs(n)" Ka(m)pa(m)+es(n) Rs(n

between the kernel map &, : Qo — B(V,H) and (F, X) € F2.



In the s,-gauge section /(1)) € C*°(M,V) and Q(r x)/(%) are
given by
I()(m) = [(sa(m), & (m)Rs(n)v)]

and by
(Qexy [ ())(m) = il (Fp)(m) = [(sa(m), &5 (m)FRs(n)v)]

respectively, m € §,. Hence we obtain the expression on Qf x) in
terms of the kernel K5g(m, n):

Q(r x)(Kas(+ m)(m)v = —=(XKap)(-, n)(m)v —@a(m)* Kag(m, n)v.
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