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Preface

In classical mechanics, integrable system called the system completely
integrable in the sense of Liouville.

Liouville proved that if, in a system with n degrees of freedom (i.e., with a
2n-dimensional phase space), n independent first integrals in involution are
known, then the system in integrable by quadratures method.

(V. I. Arnold “Mathematical Methods of Classical Mechanics”)

=⇒ On the other hand, G. De Filippo, G. Marmo, M. Salerno and G. Vilasi
constituted a new characterization of integrable systems.

For example, there are researches such as the following.

•“A geometrical setting for the Lax representation” (1982)

•“A new characterization of completely integrable systems” (1984)

•“When do recursion operators generate new conservation laws?” (1992)

•“Hamiltonian dynamics” (2001)
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We put ∆ is vector field onM2n.

In this case, the theorem similar to the following is known.

Theorem. (DMSV, see ”Hamiltonian dynamics”[4])

A vector field ∆ is separable, integrable and Hamiltonian for certain symplectic
structure when ∆ admits an invariant, mixed, diagonalizable tensor field T with
vanishing Nijenhuis torsion and doubly degenerate eigenvalues without stationary
points. Then, the vector field ∆ is a separable and completely integrable
Hamiltonian system.

Now, the operator T is called a recursion operator.

In short ...

Recursion operator

T : recursion operator ⇐⇒ ・L∆T = 0. ・NT = 0. ・degλ = 2.

Since a recursion operator is constructed based on the local coordinate system
(q, p), is not uniquely determined.
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Well-known

Following recursion operator is known so far as a concrete example.

For example ...

Rigid body, Kepler dynamics, Harmonic oscillator, Poincaré half-space model

We were able to obtain a recursion operator on the basis of some metrics such
as Poincaré metric. Specifically, we consider recursion operators using some
solutions of the Einstein equation.

Purpose

We consider geodesic flows on the pseudo-Riemann metric and Kerr-Newman
metric as concrete examples, and we construct recursion operators.

Moreover, we get constants of motion with the recursion operator.
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We were able to obtain a recursion operator on the basis of some metrics such
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Lemma
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The Minkowski metric

We will construct a recursion operator for the geodesic flow of the Minkowski
metric.

Purpose

・Constitute a specific example using pseudo-Riemannian metrics.

=⇒ First, we consider a simple case namely the Minkowski metric.
Then, we get constants of motion with the recursion operator.
Finally, we construct a recursion operator for the another vector field.

We construct the vector field ∆ for the geodesic flow on the Minkowski metric.

∆ = −p1
∂

∂q1
+

4∑
k=2

pk
∂

∂qk
,

where a matrix gi j and a equation of geodesic flow are

gi j = gi j =


−1

1
1

1

 , d2qκ

dt2
+ Γ κµν

dqµ

dt

dqµ

dt
= 0,

(
pκ =

dqκ

dt

)
.
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We put symplectic form ω =
4∑

i=1

dpi ∧ dqi .

Then, we constructed the Hamiltonian function H satisfying

i∆ω = −dH.

At this time, the Hamiltonian function such as the following can be obtained.

Hamiltonian function

H =
1

2

−p2
1
+

4∑
k=2

p2
k

 .
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Hamiltonian function

H =
1

2

−p2
1
+

4∑
k=2

p2
k

 .

We consider the Hamilton-Jacobi equation by this Hamiltonian function. The
Hamiltonian function does not include qk (and q1). Therefore, we get
pk (k = 2, 3, 4) are circular coordinate.

In other words, pk are first integral. Here, we put pk are constant.

Hamilton-Jacobi equation

2E = −p2
1
+

4∑
k=2

a2
k
,

(
ak (= pk)：const.

)
.

Hence we get a generating function W is ...

Generating function

W =

√√√ 4∑
k=2

a2
k
− 2E q1 +

4∑
k=2

akqk.
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We determine the canonical coordinate system (P,Q) using the generating
function W.

Canonical coordinate system

Q1 = E, Qk = ak = pk, P1 = −
∂W

∂Q1
=

q1

p1
, Pk = −

∂W

∂Qk
= −

q1pk

p1
− qk.

The relationship between (P,Q) and the original coordinate system (p, q)

p1 =

√√√ 4∑
k=2

Q2
k
− 2Q1, q1 = P1

√√√ 4∑
k=2

Q2
k
− 2Q1,

pk = Qk, qk = −Pk − Qk P1.
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Now, we put T is

T =
4∑

i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

In this case, from Lemma.1 and Lemma.2, we see that L∆T = 0, NT = 0 and
deg Qi = 2.

Thus, T is a recursion operator.

Recursion operator

T =
4∑

i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

If we take Tr(T), Tr(T2), Tr(T3) and Tr(T4), it is possible to obtain the constants of
motion.
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Also, if we expressed in the original coordinate system of T and Tr(Tℓ), T and
Tr(Tℓ) become ...

Representation of the original coordinate system

Recursion operator

T =
4∑

i, j=1

((
t A

)i

j

∂

∂pi
⊗ dpj + Bi

j

∂

∂qi
⊗ dpj + Ai

j

∂

∂qi
⊗ dqj

)
,

where A =



H
p2

p1
(p2 − H) p2

p3

p1
(p3 − H) p3

p4

p1
(p4 − H) p4


, B =

q1

p1
( t A − A).

Constants of motion

Tr(Tℓ) =
1

2ℓ−1

(
−p2

1
+ p2

2
+ p2

3
+ p2

4

)ℓ
+ 2

(
pℓ

2
+ pℓ

3
+ pℓ

4

)
, (ℓ = 1, 2, 3, 4).
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We reconsider in the canonical coordinate system.

Recursion operator

T =
4∑

i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

We regard T as a matrix:

T =

 S S

 , S =

Q1

Q2

Q3

Q4

 .
And we define Ki , ω1 and Γ as follows:

Ki := Qi Pi , ω1 :=
4∑

i=1

dKi ∧ dαi (αi = Qi), Γ :=
4∑

i=1

Ki
∂

∂Pi
.

At this time, ω1 is a symplectic form and satisfies the following:

ω1 = LΓω.
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Now, we constract another vector field by using ∆ and Γ,

∆h+1 := [∆h, Γ] , (∆0 = ∆ = −
∂

∂P1
).

∆1 = [∆, Γ] =
8∑

i, j=1

(
∆i ∂Γ

j

∂xi
− Γ i ∂∆

j

∂xi

)
∂

∂x j
= −Q1

∂

∂P1
,

∆2 = [∆1, Γ] = −Q2
1

∂

∂P1
, ∆3 = [∆1, Γ] = −Q3

1

∂

∂P1
.

And we define the following Poisson bracket { , }1 by using the symplectic form
ω1:

{ f , g}1 :=
∑
i, j=1

(
S−1

)i

j

(
∂ f

∂P j

∂g

∂Qi
−
∂ f

∂Qi

∂g

∂P j

)
.

Thus, we get ∆k := {H k, · } = {H k+1, · }1

where H1 =
1

2
Q2

1
, H2 =

1

3
Q3

1
, H3 =

1

4
Q4

1
.
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Preface The Minkowski metric Solution of the Einstein field equations

We choose a vector field ∆1 and a Hamiltonian function H1.

vector field ∆1 = −Q1
∂

∂P1
Hamiltonian function H1 =

1

2
Q2

1

In this case, a recursion operator corresponding to the ∆1 is described as
follows:

T1 =

4∑
i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

T1 and T are the same, so T1 is a recursion operator not only on ∆1 but also
original ∆.

In the same way, by ∆2 and H2, we have that T2 coincide with T. Similarly, we
have that T3 coincide with T.
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Solution of the Einstein field equations

Purpose

We consider geodesic flow on Kerr-Newman metric, and we construct a
recursion operator. And we get constants of motion with the recursion operator.

Einstein field equations (1915-1916)

Gµν + Λgµν = κTµν.

Gµν = Rµν −
1

2
Rgµν：Einstein tensor,

Λ：Cosmological term, κ：Constant.

=⇒ Field equation (Einstein’s field equations of General Relativity(EFE))

=⇒ Several exact solutions are given.
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Preface The Minkowski metric Solution of the Einstein field equations

Exact solutions of Einstein field equation

For example ...

• Schwarzschild metric (1916)

• Reissner-Nordström metric (1916,1918)

• Kerr metric (1963)

• Kerr-Newman metric (1965)

We consider recursion operators using some solutions of the Einstein equation.

The Schwarzschild metric is the simplest solution among the four solution in the
Einstein field equations. Also the Kerr-Newman metric is the most complex
solution in this.

Now, we consider the Schwarzschild metric and the Kerr-Newman metric .
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Kerr-Newman metric

ds2 = − 1

ρ2

(
κ − a2 sin2 θ

)
dt2 +

2asin2 θ

ρ2

(
Q2 − 2Mr

)
dtdϕ

+
ρ2

κ
dr2 + ρ2dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2
− a2κ sin2 θ

}
dϕ2.

κ := r2 − 2rM + a2 + Q2, ρ2 := r2 + a2 cos2 θ.

M：the mass of the black hole,

J：angular momentum, Q：electric charge

t ∈ (−∞,∞), r ∈ (2M,∞), θ ∈ (0, π), ϕ ∈ (0, 2π).
(
a2 + Q2 ≤ M2

)

Kerr metric (Q = 0)

ds2 = −
(
1− 2Mr

ρ2

)
dt2 − 4aMr sin2 θ

ρ2
dtdϕ

+
ρ2

κ
dr2 + ρ2dθ2 +

(
r2 + a2 +

2a2Mr sin2 θ

ρ2

)
sin2 θdϕ2.
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Reissner-Nordström metric (J = 0)

ds2 = − κ
r2

dt2 +
(
κ

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

= −
1− 2M

r
+

Q2

r2

 dt2 +
1− 2M

r
+

Q2

r2

−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Schwarzschild metric (Q = 0, J = 0)

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Preface The Minkowski metric Solution of the Einstein field equations

Kerr-Newman metric

ds2 = − 1

ρ2

(
κ − a2 sin2 θ

)
dt2 +

2asin2 θ

ρ2

(
Q2 − 2Mr

)
dtdϕ

+
ρ2

κ
dr2 + ρ2dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2
− a2κ sin2 θ

}
dϕ2.

κ := r2 − 2rM + a2 + Q2.

Reissner-Nordström metric (J = 0)

ds2 = − κ
r2

dt2 +
(
κ

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

= −
1− 2M

r
+

Q2

r2

 dt2 +
1− 2M

r
+

Q2

r2

−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Schwarzschild metric (Q = 0, J = 0)

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Preface The Minkowski metric Solution of the Einstein field equations

Kerr-Newman metric

ds2 = − 1

ρ2

(
κ − a2 sin2 θ

)
dt2 +

2asin2 θ

ρ2

(
Q2 − 2Mr

)
dtdϕ

+
ρ2

κ
dr2 + ρ2dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2
− a2κ sin2 θ

}
dϕ2.

κ := r2 − 2rM + a2 + Q2.

Reissner-Nordström metric (J = 0)

ds2 = − κ
r2

dt2 +
(
κ

r2

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2

= −
1− 2M

r
+

Q2

r2

 dt2 +
1− 2M

r
+

Q2

r2

−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Schwarzschild metric (Q = 0, J = 0)

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

Tsukasa Takeuchi Ph.D. student, The Akira Yoshioka Laboratory, Department of Mathematics, Institute of Science, Tokyo University of Science

A Construction of a Recursion Operator for Some Solutions of the Einstein Field Equations



Preface The Minkowski metric Solution of the Einstein field equations

The Schwarzschild metric

Schwarzschild metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2.

In this case, we get the vector field ∆ is ...

vector field

∆ = −
(
1− 2M

q2

)−1

p1
∂

∂q1
+

(
1− 2M

q2

)−1

p2
∂

∂q2
+ q−2

2
p3
∂

∂q3
+

p4

q2
2

sin2 q3

∂

∂q4

+

−M

q2
2

(
1− 2M

q2

)−2

p2
1
− M

q2
2

p2
2
+ q−3

2
p2

3
+

p2
4

q3
2

sin2 q3

 ∂

∂p2
+

p2
4

cosq3

q2
2

sin3 q3

∂

∂p3
.

t = q1 ∈ (−∞,∞), r = q2 ∈ (2M,∞), θ = q3 ∈ (0, π), ϕ = q4 ∈ (0, 2π).
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At this time, the Hamiltonian function H such as the following can be obtained.

Hamiltonian function

H =
1

2

−
(
1− 2M

q2

)−1

p2
1
+

(
1− 2M

q2

)
p2

2
+ q−2

2
p2

3
+

(
q2

2
sin2 q3

)−1
p2

4

 .
Next, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

The Hamiltonian function does not include q1 and q4.
Thus, we put p1 and p4 are constant.
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Hamilton-Jacobi equation

W =
4∑

k=1

Wk(qk), p1 =
dW1

dq1
= α, p4 =

dW4

dq4
= β.

2Eq2
2
+ α2

(
1− 2M

q2

)−1

q2
2
−

(
1− 2M

q2

)
q2

2

(
dW2

dq2

)2

=

(
dW3

dq3

)2

+
β2

sin2 q3

=: K.

Thus, we get a generating function W is ...

Generating function

W = αq1 +

∫
dW2

dq2
dq2 +

∫
dW3

dq3
dq3 + βq4

= αq1 +W2 +W3 + βq4.

It is difficult to describe W2 and W3 by elementary function.
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We determine the canonical coordinate system (P,Q) using the generating
function W.

Canonical coordinate system

Q1 = E, Q2 = K, Q3 = α, Q4 = β,

P1 = −
∂W2

∂Q1
−
∂W3

∂Q1
, P2 = −

∂W2

∂Q2
−
∂W3

∂Q2
, P3 = −q1 −

∂W2

∂Q3
, P4 = −

∂W3

∂Q4
−q4.

Case of canonical coordinate system, a vector field ∆ is written as follows:

Vector field
∆ =

{
H,・

}
=

{
Q1,・

}
= − ∂
∂P1
.
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In this case, a recursion operator T and the constants of motion Tr(Tℓ) are ...

Recursion operator T, Constants of motion Tr(Tℓ)

Recursion operator

T =
4∑

k=1

Qk

(
∂

∂Pk
⊗ dPk +

∂

∂Qk
⊗ dQk

)
.

Constants of motion

Tr( Tℓ) = 2
4∑

i=1

Qℓ
i
= 2

(
Eℓ + Kℓ + αℓ + βℓ

)
, (ℓ = 1, 2, 3, 4).
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The Kerr-Newman metric

As same as the Schwarzschild metric case, we consider the Kerr-Newman
metric.

Kerr-Newman metric

ds2 = − 1

ρ2

(
κ − a2 sin2 θ

)
dt2 +

2asin2 θ

ρ2

(
Q2 − 2Mr

)
dtdϕ

+
ρ2

κ
dr2 + ρ2dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2
− a2κ sin2 θ

}
dϕ2.

κ = r2 − 2rM + a2 + Q2, ρ2 = r2 + a2 cos2 θ.
(
a2 + Q2 ≤ M2

)
t = q1 ∈ (−∞,∞), r = q2 ∈ (2M,∞), θ = q3 ∈ (0, π), ϕ = q4 ∈ (0, 2π).

gi j =



−
(
κ − a2 sin2 θ

)
ρ−2 asin2 θ

(
Q2 − 2Mr

)
ρ−2

ρ2κ−1

ρ2

asin2 θ
(
Q2 − 2Mr

)
ρ−2 sin2 θ

{(
r2 + a2

)2
− a2κ sin2 θ

}
ρ−2


.
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Vector field

∆ =

4∑
i=1

(
Xi
∂

∂pi
+ Yi

∂

∂qi

)
.

We omitted details of this equation because it is too complicated.

However, we
were able to obtain a Hamiltonian function H such as the following.

Hamiltonian function

H =
1

2


 a2

ρ2
sin2 q3 −

(q2
2
+ a2)2

κρ2

 p2
1
+
κ

ρ2
p2

2

+
1

ρ2
p2

3
+

 a2

κρ2
− 1

ρ2 sin2 q3

 p2
4
+ 2

 a

ρ2
−

a(q2
2
+ a2)

κρ2

 p1p4

 .
κ = q2

2
− 2Mq2 + a2 + Q2 = κ(q2), ρ2 = q2

2
+ a2 cos2 q3 = ρ

2(q2, q3).

The Hamiltonian function H does not include q1 and q4. Hence, p1 and p4 are first
integral.
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Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

Hamilton-Jacobi equation

W =
4∑

k=1

Wk(qk), p1 =
dW1

dq1
= α, p4 =

dW4

dq4
= β.

2Eq2
2
+

(q2
2
+ a2)2

κ
α2 − κ

(
dW2

dq2

)2

+
a2

κ
β2 +

2a(q2
2
+ a2)

κ
αβ

= −2Ea2 cos2 q3 + a2α2 sin2 q3 +

(
dW3

dq3

)2

−
β2

sin2 q3

+ 2aαβ =: K.

Thus, we get a generating function W is ...

Generating function

W = αq1 +

∫
dW2

dq2
dq2 +

∫
dW3

dq3
dq3 + βq4 = αq1 +W2 +W3 + βq4.
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Then, we consider the Hamilton-Jacobi equation by this Hamiltonian function.

Hamilton-Jacobi equation

W =
4∑

k=1

Wk(qk), p1 =
dW1

dq1
= α, p4 =

dW4

dq4
= β.

2Eq2
2
+

(q2
2
+ a2)2

κ
α2 − κ

(
dW2

dq2

)2

+
a2

κ
β2 +

2a(q2
2
+ a2)

κ
αβ

= −2Ea2 cos2 q3 + a2α2 sin2 q3 +
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dW3

dq3

)2
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sin2 q3
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We determine the canonical coordinate system (P,Q) using the generating
function W.

Canonical coordinate system

Q1 = E, Q2 = K, Q3 = α, Q4 = β,

P1 = −
∂W2

∂Q1
−
∂W3

∂Q1
, P2 = −

∂W2

∂Q2
−
∂W3

∂Q2
,

P3 = −q1 −
∂W2

∂Q3
−
∂W3

∂Q3
, P4 = −

∂W2

∂Q4
−
∂W3

∂Q4
− q4.

Case of canonical coordinate system, a vector field ∆ is written as follows:

Vector field
∆ =

{
H,・

}
= − ∂
∂P1
.
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At this time, a recursion operator T and the constants of motion Tr(Tℓ) are ...

Recursion operator T, Constants of motion Tr(Tℓ)

Recursion operator

T =
4∑

i=1

Qi

(
∂

∂Pi
⊗ dPi +

∂

∂Qi
⊗ dQi

)
.

Constants of motion

Tr( Tℓ) = 2
4∑

i=1

Qℓ
i
= 2

(
Eℓ + Kℓ + αℓ + βℓ

)
, (ℓ = 1, 2, 3, 4).

We were able to construct a recursion operator, determined by the geodesic
flow from Kerr-Newman metric.

Thus, we get it to be integrable system. And we get that it has a constants of
motion.
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Thank you for your attention!
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