APPLICATIONS

OF

LUSTERNIK-SCHNIRELMANN CATEGORY AND ITS

GENERALIZATIONS

John Oprea Department of Mathematics Cleveland State University

LECTURE 2: A CLASSICAL APPLICATION AND REFORMULATIONS OF LS CATEGORY

Recall in Lecture 1 that we proved the following:

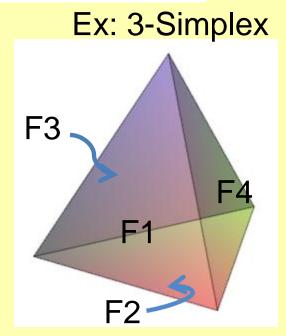
Lusternik-Schnirelmann Theorem. If S^n is covered by closed (or open) sets C_1, \ldots, C_{n+1} , then at least one C_i contains antipodal points.

Let's use this to prove one of the most theorems in Mathematics.

Proposition. The LS Theorem implies that there does not exist a map $f: S^n \to S^{n-1}$ such that f(-x) = -f(x)for all x. (Such a map is called an antipodal map.) **Proof**. Suppose an antipodal map $f: S^n \to S^{n-1}$ exists. Represent S^{n-1} as the boundary of an n-simplex and let the faces be denoted $F_1, F_2, \ldots, F_{n+1}$. Note that no F_j contains antipodal points.

Let
$$G_j = f^{-1}(F_j)$$
, $j = 1, \dots, n + 1$.
The set $\{G_j\}$ covers S^n .

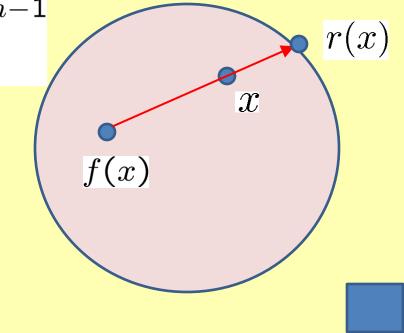
The LS theorem then says that there is some G_j containing antipodal points, x, -x. Then $f(x), f(-x) = -f(x) \in F_j$ is a contradiction.



Brouwer Fixed Point Theorem. Every map $f: D^n \rightarrow D^n$ has a fixed point.

Lemma. If $f \colon D^n \to D^n$ does not have a fixed point, then there is a map $r \colon D^n \to S^{n-1}$ with $r \circ \operatorname{incl}_{S^{n-1}} = 1_{S^{n-1}}$ (i.e. a retraction).

Proof. The retraction $r: D^n \to S^{n-1}$ is depicted to the right.



Proof of BFPT. Suppose $f: D^n \to D^n$ does not have a fixed point. Let $r: D^n \to S^{n-1}$ be the consequent retraction from the Lemma.

Define a map $g \colon S^n \to S^{n-1}$ by

$$g(x_1, \dots, x_{n+1}) = \begin{cases} r(x_1, \dots, x_n) & \text{if } x_{n+1} \ge 0\\ -r(-x_1, \dots, -x_n) & \text{if } x_{n+1} \le 0. \end{cases}$$

Note that g is antipodal. That is,

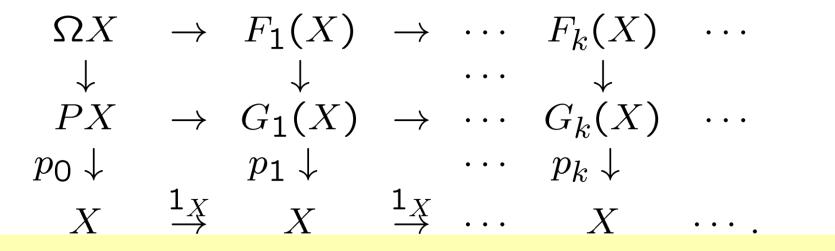
$$g(-x_1,\ldots,-x_{n+1}) = -g(x_1,\ldots,x_{n+1})$$

Contradiction!

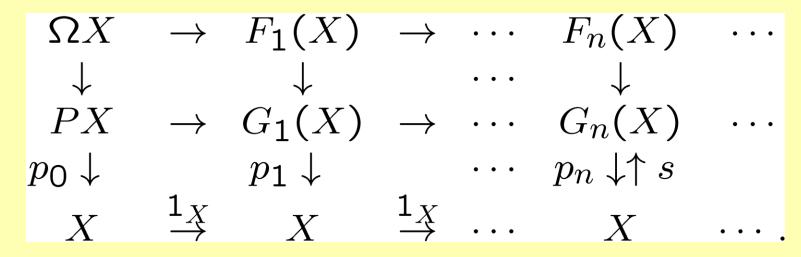
While LS category proves some classical results, we can't get too far using only the open set definition.

Reformulation of LS Category

Let $PX = \{\gamma \colon I \to X | \gamma(0) = x_0\}$ be the contractible space of based paths. We construct



where $G_{j+1}(X) = G_j(X) \cup C(F_j(X)) \simeq G_j(X)/F_j(X)$ is the mapping cone of the previous fibre inclusion. **Definition-Theorem**. cat $(X) \leq n$ if and only if there is a (homotopy) section $s \colon X \to G_n(X)$ (i.e. $p_n \circ s \simeq 1_X$).



Note that, in cohomology, we have $s^* \circ p_n^* = \mathbf{1}_{H^*}$, so p_n^* is injective.

Definition. For $f \colon Y \to X$, $cat(f) \leq n$ if and only if there is a map $s \colon Y \to G_n(X)$ such that $p_n \circ s \simeq f$.

Note that $cat(f) \leq cat(X)$.

1. $G_1(X) \simeq \Sigma \Omega(X)$. This follows since $G_1(X) = G_0(X) \cup C(\Omega X) \simeq * \cup C(\Omega X).$

2. If
$$X = K(\pi, 1)$$
, then $G_1(X) \simeq \vee S^1$.

3. If $X = K(\pi, 1)$, then $G_k(X)$ is homotopy k-dimensional.

Definition. Let $u \in H^*(X; A)$. The category weight of u, denoted wgt(u), is the maximum k such that $p_{k-1}^*(u) = 0$, where $p_{k-1}^* \colon H^*(X; A) \to H^*(G_{k-1}(X); A)$ is the map induced on cohomology by $p_{k-1} \colon G_{k-1}(X) \to X$.

Properties: (1.) $wgt(u) \le cat(X)$. **Proof**. Suppose cat(X) = k. Then we have

Therefore, p_k^st is injective.

(2.) $wgt(uv) \ge wgt(u) + wgt(v)$.

(3.) If
$$X = K(\pi, 1)$$
 and $u \in H^d(X)$, then $\mathsf{wgt}(u) \geq d$.

Proof of (3.) for d=2.
$$G_1(X) \simeq \Sigma \Omega X \simeq \vee S^1$$

 $\Rightarrow p_1^*(u) = 0$ (where $p_1: G_1(X) \to X$).

7

(4.) If $f \colon X \to Y$, $u \in H^*(Y)$ and $f^*(u) \neq 0$, then $wgt(f^*(u)) \ge wgt(u)$.

Here is a property to keep in mind!

(5.) If $f: X \to Y$ is a map and $f^*(u) \neq 0$, then $cat(f) \ge wgt(u)$.

Proof of (5.). Look at the diagram for cat(f) = k.

 $\begin{array}{ccc} & G_k(Y) \\ s \nearrow & \downarrow p_k \\ X & \stackrel{f}{\to} & Y \end{array}$

We assume that $f^*(u) \neq 0$, so the commutativity of the diagram then gives $p_k^*(u) \neq 0$. The definition of category weight then says that wgt $(u) \leq k$.

Sectional Category.

Suppose $F \to E \xrightarrow{p} B$ is a fibration. Then the sectional category of p, denoted secat(p), is the least integer n such that there exists an open covering, U_1, \ldots, U_{n+1} , of B and, for each U_i , a map $s_i \colon U_i \to E$ having $p \circ s_i = \operatorname{incl}_{U_i}$. (That is, s_i is a local section of p).

Properties:

(1) $\operatorname{secat}(p) \leq \operatorname{cat}(B)$.

(2) If E is contractible, then secat(p) = cat(B).

(3) If there are $x_1, \ldots, x_k \in H^*(B; R)$ (any coefficient ring R) with

 $p^*x_1 = \ldots = p^*x_k = 0$ and $x_1 \cup \cdots \cup x_k \neq 0$, then secat $(p) \ge k$.

(4) Suppose $F \xrightarrow{i} E \xrightarrow{p} B$ is a fibration arising as a pullback of a fibration $\widehat{p} \colon \widehat{E} \to \widehat{B}$ where \widehat{E} is contractible (such as a principal bundle).

$$\begin{array}{c} E \xrightarrow{\widetilde{f}} \widehat{E} \\ p \middle| & | \widehat{p} \\ B \xrightarrow{f} \widehat{B} \end{array}$$

Then secat $(p) = \operatorname{cat}(f)$.

Later we will need a refinement of our definition of LS category.

The 1-category of a space X, denoted $\operatorname{cat}_1(X)$, is the least integer n so that X may be covered by open sets U_0, \ldots, U_n having the property that, for each U_i , there is a partial section $s_i \colon U_i \to \widetilde{X}$, where $p \colon \widetilde{X} \to X$ is the universal cover (so $p \circ s_i$ is homotopic to the inclusion $U_i \hookrightarrow X$).

Note that this is just a specialization of sectional category to the universal covering.

$$\mathsf{cat}_1(X) = \mathsf{secat}(\widetilde{X} \to X).$$

A few properties of $\operatorname{cat}_1(X)$. (1.) $\operatorname{cat}_1(X) = \operatorname{cat}(j_1 \colon X \to K(\pi_1 X, 1))$. The category on the right is *the category of a map*. Theorem. If $\pi_1(X) = \pi$, $B\pi = K(\pi, 1)$ and k is the maximum degree for which $j_1^* \colon H^k(B\pi; \mathcal{A}) \to H^k(X; \mathcal{A})$ is non-trivial (for any local coefficients \mathcal{A}), then

$$k \leq \operatorname{cat}_1(X) \leq \operatorname{cat}(B\pi) = \dim(B\pi).$$

Moreover, if $X = K(\pi, 1)$, then $\operatorname{cat}_1(X) = \dim(B\pi)$ (for $\dim(B\pi) > 3$).

Examples: If X is simply connected, then $cat_1(X) = 0$. Also, $cat_1(T^n) = n$. **Theorem**. (Eilenberg-Ganea) $\operatorname{cat}_1(X) \leq n$ if and only if there exists an *n*-dimensional complex *L* such that there is a map $f \colon X \to L$ inducing an isomorphism

$$f_* \colon \pi_1(X) \stackrel{\cong}{\to} \pi_1(L).$$

Corollary. $\pi_1(X)$ is free if and only if $\operatorname{cat}_1(X) = 1$.

The next two properties are more or less general properties of category-type invariants.

(2.)
$$\operatorname{cat}_1(X \times Y) \leq \operatorname{cat}_1(X) + \operatorname{cat}_1(Y).$$

(3.) If X is a CW complex and $p \colon \overline{X} \to X$ is a covering space, then $\operatorname{cat}_1(\overline{X}) \leq \operatorname{cat}_1(X)$.

The next lecture will focus on critical point theory and geometry!