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L ECTURE 4: NEW LS CATEGORICAL IDEAS IN
APPLIED MATHEMATICS

LS category also has a place in applied mathematics
besides critical point theory. We will look at two
examples, one “old” and one “new”.

In order to do this, we need to recall the “new”
notion of “category” called sectional category.



Sectional Category.
p

Suppose FF — E — B is a fibration. Then
the sectional category of p, denoted secat(p),
IS the least integer n such that there exists
an open covering, Uq,...,Up,41, of B and, for
each U;, a map s;: U; — E having pos; = InCly..
(That is, s; is a local section of p).

Properties:

(0) secat(p: X — X) = cat1(X).

(1) secat(p) < cat(B).

(2) If E is contractible, then secat(p) = cat(B).



(3) If there are z1,...,z;, € H*(B; R) (any co-
efficient ring R) with

p'xi=...=pz, =0 and z1U---Uzy # 0,
then secat(p) > k.

(4) Suppose F * B2 Bis a fibration arising
as a pullback of a fibration p: E — B where E
is contractible (such as a principal bundle).
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Then secat(p) = cat(f).



Smale’s Topological Complexity of Algorithms

An algorithm tree is a connected directed graph
G with vertices {R,V1,...,VNn,L1,...,Lm} sat-
isfying the following conditions.

(1) There are no loops, i.e., G is a tree.

(2) The root R has only one edge and that
edge comes out of R.

(3) Each V; has one edge coming into it and ei-
ther one or two edges coming out of it. Those
V; with one edge coming out are called compu-
tation vertices and those with two edges com-
INng out are called branch vertices.



(4) Each leaf L, has only one edge coming
into it.

Example: An Algorithm Tree G
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The Smale topological complexity of an algo-
rithm tree G, or of the algorithm that it de-
scribes, is defined to be the number of branch
vertices in G. This is also equal to one fewer
than the number of leaves in the tree:

#{L;} — 1 = #{Branch V;} = 7(G).

The Smale topological complexity of a partic-
ular problem P is the minimum of the topolog-
ical complexities of all algorithms which solve
the problem:

7(P) = min{r(G) | G = algorithm tree for P}.



Example: Root Finding Problem.
Find the roots of P(x), where

P(x) =ag+ a1z + agmz + .-+ ad_la:d_l + 2,

IS @ monic polynomial of degree d with complex
coefficients.
Here, the word “find” is taken to mean “find

to within a given accuracy €.

Theorem (Vassiliev). There exists an algo-
rithm tree of topological complexity d — 1 for
the problem of determining roots of degree d
monic polynomials to within given ¢ > 0. Thus,

the topological complexity of the problem is at
Mmost d — 1.



P; = the set of degree d monic polynomials
with complex coefficients.

Take the mapping =: C% — P, given by

d
m(€1,...,89) = || (& — &).
i—1

Let

A = {(&1,..-,€a): & = & for some i # j} C C%
m(A) = X = {Polynomials with repeated roots} C P,.

Denote the restriction
w\cd_A:Cd—A%Pd—Z

by 7w as well.



The symmetric group on d letters, S(d), acts
without fixed points on C?— A, so « is a (d!)-
fold covering map with S(d) permuting the d
coordinates ¢;.

Theorem. (Smale) For any d there exists
eq > 0 such that, for e < ¢4, the topological
complexity 7(P(d, €)) for the problem of finding
roots of degree d monic polynomials to within
e IS at least the sectional category of the cov-
ering 7: C¢— A — P, — X. That is,

7(P(d,e)) > secat(mw).



Proof Sketch. (Can reduce to case of no repeated roots.)
(i) Let the solution algorithm tree be G with
vertices {R,V1,..., VN, L1,...,Lm}.

(ii) Define Z; to be the set

{P(x) € P;—2: the output of the algorithm tree
GG applied to P(x) exits the tree through leaf L;}.
(iii) Define (since an algorithm exists) an input-
output map ¢: Py — X — C% by ¢(P(z)) =
(21,29,...,24), Where each z; satisfies |z; — &| <

e, for & the true roots of P(x).

(iv) The branch inequalities say that Z; is a
semi-algebraic set, so the Tietze extension the-
orem gives an open set U; containing Z; and
an extension ¢: U; — C¢.



These are “sections to within €¢’. They can be
deformed to actual sections, soO

secat(m) < m — 1 = #(branches) = 7(P(d,¢)).

Combined with Vassiliev’'s result, we have
d—1>7(P(d,e)) > secat(w).

The covering map 7: C¢ — A — P, — X is a
principal bundle induced by some classifying
map f: P;— 2> — K(S(d),1). Then, we have
secat(w) = cat(f)

So how do we calculate cat(f)?



In fact, C% — A = R? [d], the ordered configura-
tion space of d points in R2.

The symmetric group S(d) acts freely on R2[d]
by permuting the ordering and the resulting
quotient is the dth unordered configuration space,
denoted R?(d), which is P; — X.

Now, R2(d) = K(Br(d),1), where Br(d) is the
braid group and there is a homomorphism Br(d) —
S(d) arising from the classifying map f: R2(d) —
K(S(d),1) of the covering projection R2[d] —
R2(d).



Theorem (Arnold-Fuchs-Vassiliev).

0 if d #= p1, for p prime

H YK (Br(d),1); £7) =
(K(Br{a), 1): +2) {Zp if d=pd, for p prime

Moreover, the homomorphism f*: H*(K(S(d),1); +7Z) —
H*(K(Br(d),1);+7Z) is surjective.

Corollary. For d equal to a power of some
prime, there exists ¢; > 0 such that, for e < ¢4,

7(P(d,e)) =d— 1.

Proof. Since f*is surjective and H% 1 (Br(d); £7) #
0, there exists u € H*1(S(d); £7) with f*(u) #
0. Hence,

secat(w) = cat(f) > wgt(u) > d — 1.




Farber’s Topological Complexity of Motion Planning

A mechanical system S is described by its to-
tality of states X = X(S); this is the configu-
ration space of S.

Example. (1) A planar pendulum has config-
uration space S1.

(2) A planar double pendulum has configura-
tion space 72 = S1 x st

(3) A planar n-pendulum (or planar robot arm
with n bars) has configuration space T".



(4) If n particles (or robots) move in a space
Y to avoid collisions, then the configuration

space is

(5) If n robots move along a set wire
system in the floor of a factory, say,
then they move on a graph I'.

The configuration space is then
F(IM,n).

R.0.B.0.T. Comics

"HIS PATH-PLANNING MAY BE

SUB-OPTIMAL, BUT IT'S GOT FLAIR."



The Motion Planning Problem.

Let X be the configuration space of a system
S. The motion planning problem is to find a
continuous path ~:I — X with v(0) = A and
~(1) = B for any A,B € X.

We make the following requirements:

(1) The process of finding the path should
work for all pairs of points;

(2) The process should be fully automated (i.e.
algorithmic).

This is a Motion Planning Algorithm.



Let ev: X! — X x X be the evaluation fibra-

tion ev(v) = (v(0),~v(1)). A motion planning
algorithm is a continuous section

SIXXX—>XI, evoslexX.

T heorem. A motion planning algorithm s ex-
Ists If and only if X is contractible!

Proof. If X ~ x let H: X x I — X have
H(x,0) = =z and H(x,1) = Bgy. Given A, B,
define

H(B,2-2t) 1/2<t<1.

(H(A, 2t 0<t<1/2
¥t = { #6420 /




If s exists, define H: X x I — X by H(A,t) =
s(A,Bg)(t). Then H(A,0) = A and H(A,1) =
Bg since s is a section. .

So, in general, there is no Motion Planning Algorithm.

What do we do? Measure the deviation!

Definition. The Topological Complexity of

the motion planning algorithm problem for X
1S

TC(X) = secat(ev: X! — X x X).



Topological Complexity is estimated by LS Category.
Theorem. The following estimates hold:
cat(X) < TC(X) <cat(X x X). <2cat(X)

Proposition. If X is a Lie group, then

TC(X) = cat(X).

Example. TC(T") = cat(T™) = n.

Example. TC(RP3) = TC(S0O(3)) = 3.

Example.

1 n odd
2 n even.

TC(S") = {



on—2 m odd

TC(F(R™,n)) = 5
2n — 3 m even.

Theorem. Let [ be a connected graph with
at least one vertex of degree > 3. Then

TC(F(IM,n)) <2m(lN),

where m(I") is the number of vertices of degree
> 3.

If n>m(lN) > 2, then TC(F(I',n)) =2m(lN).



The Topological Complexity of real projective spaces has a
fascinating connection to a classical question in topology.

Theorem. For n #= 1,3,7, TC(RP") is the
smallest k£ such that RP™ admits an immersion
into RP*.

Open Question. If G is a discrete group of finite
cohomological dimension c¢d(G) < oo, can

TC(K(G,1)) = TC(G) be described by the algebraic
structure of G?

New Theorem. (Grant-Lupton-Oprea) If A
and B are complementary subgroups of G (i.e.
AB =G and An B = 0), then

cd(A x B) < TC(G).



The mathematical facts worthy of being
studied are those which, by their analogy with
other facts, are capable of leading us to the
knowledge of a mathematical law just as
experimental facts lead us to the knowledge
of a physical law. They reveal the kinship
between other facts, long known, but wrongly
believed to be strangers to one another.

----- Henri Poincaré



