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Q — configuration space, n-dimensional manifold.
Schrödinger theory: pure states are complex scalar densities Ψ of weight 1/2 (Mackey). Scalar product:

(Ψ,Φ) =

∫
ΨΦ =

∫
Ψ(q)Φ(q)dq1 . . . dqn. (1)

But usually Q is a (pseudo-)Riemann space (Q,Γ).
Classical kinetic energy:

T =
1

2
Γµν

dqµ

dt

dqν

dt
. (2)

The metric Γ gives rise to the natural volume measure:

dµΓ(q) =
√
|det[Γµν ]|dq1 . . . dqn. (3)

Wave densities Ψ as scalar functions ψ:

Ψ(q) = ψ(q) 4

√
|detΓµν |. (4)

Scalar product:

(Ψ|Φ) = 〈ψ|ϕ〉 =

∫
ψ(q)ϕ(q)dµΓ(q). (5)

Kinetic energy, classical and quantum:

T =
1

2
Γµνpµpν , ΓµαΓαν = δµν , pµ =

∂T

∂q̇µ
= Γµν

dqν

dt
, (6)

T = −~2

2
∆(Γ), (7)
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where ∆(Γ) — Laplace-Beltrami:

∆(Γ) =
1√
|Γ|

∑
µ,ν

∂µ
√
|Γ|Γµν∂ν = Γµν∇µ∇ν , (8)

H = T + V, (Vψ)(q) = V (q)ψ(q). (9)

If Q is multiply-connected, we can admit wave functions on Q, the covering manifold of Q. But ψψ should
be projectable to Q. This is the case with rigid body, affinely-rigid body and many other systems.
We assume Q to be a Lie group G. It is endowed with the Haar measure µ. But usually µΓ = µ. Namely,
in practical problems Γµν is left- or right-invariant. But then µΓ is so as well. But the invariant measure
on G is unique up to normalization constant, so we can admit µΓ = µ.
Let Eµ, Eµ be elements of mutually dual bases in G′, G′∗ (Lie algebra and co-algebra of G). qµ — first
kind canonical coordinates on G:

g(q) = exp(qµEµ). (10)

Lie-algebraic velocities:

Ω =
dg

dt
g−1 = ΩµEµ =

(
Ωµ

ν(q)
dgν

dt

)
Eµ, (11)

Ω̂ = g−1dg

dt
= Ω̂µEµ =

(
Ω̂µ

ν(q)
dgν

dt

)
Eµ = g−1Ωg. (12)

Left- and right-invariant kinetic energies:

Tleft =
1

2
Lµν(q)Ω̂µΩ̂ν , Tright =

1

2
Rµν(q)Ω

µΩν . (13)

[Lµν(q)], [Rµν(q)] — constant, non-singular and symmetric.
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Legendre transformation, non-holonomically:

Σ̂µ =
∂Tleft

∂Ω̂µ
= LµνΩ̂ν , Σµ =

∂Tright

∂Ωµ
= RµνΩ

ν , (14)

Hamiltonian generators, i.e., momentum mappings of right and left transformations. Hamiltonians:

Hleft = Tleft + V (q) =
1

2
LµνΣ̂µΣ̂ν + V (q) , (15)

Hright = Tright + V (q) =
1

2
RµνΣµΣν + V (q) . (16)

[Lµν(q)], [Rµν(q)] denoting inverses of [Lµν(q)], [Rµν(q)].
When the structure constants are Cλ

µν ,

[Eµ, Eν ] = EλC
λ
µν , (17)

then the Poisson brackets are:

{Σµ,Σν} = ΣλC
λ
µν ,

{
Σ̂µ, Σ̂ν

}
= −Σ̂λC

λ
µν ,

{
Σµ, Σ̂ν

}
= 0. (18)

Left and right regular translations in L2(G, µ):

(L(k)Ψ) (g) = Ψ(kg), (R(k)Ψ) (g) = Ψ(gk). (19)

They are unitary:
〈L(k)Ψ|L(k)ϕ〉 = 〈Ψ|ϕ〉 = 〈R(k)Ψ|R(k)ϕ〉 (20)

and represent G:
R(kl) = R(k)R(l), L(kl) = L(l)L(k). (21)
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Generators:

(Lµf) (g) =
∂

∂qµ
f (k(q)g)

∣∣∣∣
q=0

, (22)

(Rµf) (g) =
∂

∂qµ
f (gk(q))

∣∣∣∣
q=0

. (23)

Commutation rules:

[Lµ,Lν ] = −LκC
κ
µν , [Rµ,Rν ] = RκC

κ
µν , [Lµ,Rν ] = 0. (24)

Lµ, Rµ — anti-self-adjoint:

〈LµΨ|ϕ〉 = −〈Ψ|Lµϕ〉 , 〈RµΨ|ϕ〉 = −〈Ψ|Rµϕ〉 . (25)

Classical Poisson brackets in terms of Lµ, Rµ:

{A,B} = ΣλC
λ
µν
∂A

∂Σµ

∂B

∂Σν

− ∂A

∂Σµ

LµB +
∂B

∂Σµ

LµA

= −Σ̂λC
λ
µν
∂A

∂Σ̂µ

∂B

∂Σ̂ν

− ∂A

∂Σ̂µ

RµB +
∂B

∂Σ̂µ

RµA. (26)

In particular, when f depends only on qn, we have:

{Σµ, f} = −Lµf, {Σ̂µ, f} = −Rµf. (27)

Exponential expression for L(k), R(k):

F (k(q)g) = exp (qµLµ)F, F (gk(q)) = exp (qµRµ)F. (28)
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True for the restricted class of smooth F -s, but the left-hand sides are generally well defined. One can
show that

Lµ = Σα
µ
∂

∂qα
, Rµ = Σ̂α

µ
∂

∂qα
, (29)

where
Σα

µΩµ
β = δαβ, Σ̂α

µΩ̂µ
β = δαβ. (30)

Quantum operators of physical Σ, Σ̂-quantities:

Σµ :=
~
i
Lµ =

~
i
Σα

µ(q)
∂

∂qα
, Σ̂µ :=

~
i
Rµ =

~
i
Σ̂α

µ(q)
∂

∂qα
. (31)

Obviously, they are self-adjoint. The quantum Poisson bracket

Q {F,G} =
1

i~
[F,G] =

1

i~
(FG−GF) , (32)

for Σµ, Σ̂µ has the same algebraic structure as classical:

Q {Σµ,Σν} = ΣλC
λ
µν , Q

{
Σ̂µ, Σ̂ν

}
= −ΣλC

λ
µν , Q

{
Σµ, Σ̂ν

}
= 0. (33)

Quantum operators of kinetic energy are given by:

Tleft =
1

2
LµνΣ̂µΣ̂ν = −~2

2
LµνRµRν , (34)

Tright =
1

2
RµνΣµΣν = −~2

2
RµνLµLν . (35)
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If G is semi-simple, then these models coincide when the Killing tensor

γµν = Cα
βµC

β
αν (36)

is used as the metric tensor at the identity of G. Then:

Γµν(q) = γαβΣα
µ(q)Σβ

ν(q) = γαβΣ̂α
µ(q)Σ̂β

ν(q). (37)

More precisely: this is true when

G = G1 × . . .×Gp = ×Nk=1Gk, (38)

where Γ(k) are simple and

Γ =
N∑
k=1

ckπk
∗Γ(k) = c1π1

∗Γ(1) + . . .+ cNπN
∗Γ(N), (39)

πk = G→ Gk is the natural projection, Γ(k) is the Killing metric on Gk and ck are constants.
Let us now go to the general case of the quantized affinely-rigid body. In the classical part it was stated
that the configuration space is LI(U, V )×M , where M is the physical space, V , U are translation spaces
of the physical and material spaces M , N , and LI(U, V ) is the manifold of linear isomorphisms from U
onto V . The induced coordinates in the configuration space are (xi, ϕiK). Any choice of coordinates
identifies Q ' GAffI(N,M) with LI(U, V )×M , and consequently, with GL(n,R)×̃Rn. The most natural
measures on GL(n,R)×̃Rn and GL(n,R) seem to be a, l, where

da(ϕ, x) = dx1 . . . dxndϕ1
1 . . . dϕ

n
n = dl(ϕ)dx1 . . . dxn, (40)

dl(ϕ) = dϕ1
1 . . . dϕ

n
n. (41)
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They are not Haar measures. The latter ones are given by α, λ, where:

dα(ϕ, x) = (detϕ)−n−1da(ϕ, x), (42)
dλ(ϕ) = (detϕ)−ndl(ϕ). (43)

In practical calculations it is convenient to express them in terms of the two-polar decomposition:

dλ(ϕ) = dλ(L, q,R) =
∏
i 6=j

∣∣sh (qi − qj)∣∣ dν(L)dν(R)dq1 . . . dqn, (44)

where ν is the Haar measure on SO(n,R), or equivalently — on the manifold of orthonormal frames.
Similarly, one can show that

dl(ϕ) = dl(L,Q,R) =
∏
i 6=j

∣∣(Qi +Qj
) (
Qi −Qj

)∣∣ dν(L)dν(R)dQ1 . . . dQn. (45)

Shortened notation:

Pλ =
∏
i 6=j

∣∣sh (qi − qj)∣∣ , Pl =
∏
i 6=j

∣∣(Qi +Qj
) (
Qi −Qj

)∣∣ . (46)

Then:

dλ(ϕ) = Pλdν(L)dν(R)dq1 . . . dqn, (47)
dl(ϕ) = Pldν(L)dν(R)dQ1 . . . dQn. (48)

Switching out the dilatational variable, i.e., reducing to the subgroup SL(n,R):

dλSL(ϕ) = Pλdν(L)dν(R)δ
(
q1 + . . .+ qn

)
dq1 . . . dqn. (49)
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The indices µ in Σµ, Σ̂µ become now two-indices like (ab),
(
A
B

)
. Therefore, the laboratory and co-moving

representations of affine spin become now operators:

Σa
b :=

~
i
La

b =
~
i
ϕaK

∂

∂ϕbK
, Σ̂

A

B :=
~
i
RA

B =
~
i
ϕmB

∂

∂ϕmA
. (50)

Similarly, the spin and vorticity operators are given by:

Sab = Σa
b − gacgbdΣd

c, VA
B = Σ̂

A

B − ηACηBDΣ̂
D

C . (51)

When using the Lebesgue measure l, we must replace Σµ, Σ̂µ by:

Σ(l)ab = Σa
b +

~n
2i
δab, Σ̂(l)AB = Σ̂

A

B +
~n
2i
δAB. (52)

Similarly, for the linear momentum in spatial and material representations we have:

Pa =
~
i

∂

∂xa
, P̂A =

~
i
ϕaA

∂

∂xa
. (53)

They are interrelated through ϕ:

P̂A = ϕaAPa, Pa = ϕ−1A
a P̂A. (54)

One can also introduce the translational and total affine momentum of the body with respect to some
fixed spatial origin O ∈M ,

Λ[O]ij = xiPj, J[O]ij = Λ[O]ij + Σi
j. (55)

They generate GAff(M) acting, e.g., through:

(xa, ϕaA) 7→
(
Labx

b, Labϕ
b
A

)
. (56)
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Let us introduce the operator of canonical momentum conjugate to the “centre of mass” of logarithmic
deformation invariants:

p =
~
i

∂

∂q
= Σa

b = Σ̂
A

B. (57)

The deviatoric, i.e., shear components of Σ, Σ̂ are given by:

σab := Σa
b −

1

n
p δab, σ̂AB := Σ̂

A

B −
1

n
p δAB. (58)

Just like in classical theory, spin and vorticity are Hamiltonian generators of the left and right rotations
of ϕ. For any functions F , H of the L,R-arguments we have:

F (W (µ)L) =

(
exp

(
i

2~
µijS

j
i

)
F

)
(L), (59)

H (T (ν)R) =

(
exp

(
− i

2~
νABVB

A

)
H

)
(R). (60)

where coefficients µij, νAB are g, η-skew-symmetric:

µij = −gikgjlµlk, νAB = −ηACηBDνDC . (61)

W (µ), π(ν) are finite transformations from SO(V, g), SO(U, η).
Other factors of the two-polar decomposition are unaffected. From the point of view of “rigid bodies” L,
R are “spatially” rotated respectively in V and U . The corresponding “co-moving” components

%ab = LaiL
j
bS

i
j, τ ab = −RB

bR
a
AVA

B. (62)

generate right, i.e., material, rotations of the L,R-rigid bodies. Namely, for any ωab satisfying

ωab = −δacδbdωdc. (63)
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the corresponding Z(ω) ∈ SO(n,R) acts on the L, R dependence as follows:

F (LZ(ω)) =

(
exp

(
i

2~
ωab%

b
a

)
F

)
(L), (64)

H (RZ(ω)) =

(
exp

(
− i

2~
ωabτ

b
a

)
H

)
(R). (65)

Just like in classical theory one achieves a partial diagonalization of the kinetic energy in terms of operators

Ma
b = −%ab − τ ab, Na

b = %ab − τ ab. (66)

In geodetic affinely-invariant models in two dimensions these quantities are constants of motion. For
n > 2 it is no longer the case, but the Casimir invariants built of %ab, τ ab are constants of motion. They
are so even in non-geodetic case when with potential energy depends only on deformation invariants.
Casimir operators are given by

C(k) = Σa
bΣ

b
c . . .Σ

r
sΣ

s
a = Σ̂

A

BΣ̂
B

C . . . Σ̂
R

SΣ̂
S

A. (67)

In particular for k = 2:
C(2) = Σa

bΣ
b
a = Σ̂

A

BΣ̂
B

A. (68)

For skew-symmetric tensor operators like Sab, Va
b we change the normalization:

‖S‖2 = −1

2
SabS

b
a, ‖V‖2 = −1

2
VA

BVB
A. (69)
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In analogy to classical formulas one can show that

Taff−aff
int =

1

2A
C(2)− B

2A(A+ nB)
p2, (70)

Tmet−aff
int =

1

2α
C(2) +

1

2β
p2 +

1

2µ
‖S‖2, (71)

Taff−met
int =

1

2α
C(2) +

1

2β
p2 +

1

2µ
‖V‖2 (72)

with the same meaning of symbols as in the classical part:

α = I + A, β = −(I + A)(I + A+ nB)

B
, µ =

I2 − A2

I
. (73)

In certain formulas it is convenient to separate the shear and dilatational phenomena:

Taff−aff
int =

1

2A
CSL(n,R)(2) +

1

2n(A+ nB)
p2, (74)

Tmet−aff
int =

1

2(I + A)
CSL(n,R)(2) +

1

2n(I + A+ nB)
p2

+
I

2(I2 − A2)
‖S‖2, (75)

Taff−met
int =

1

2(I + A)
CSL(n,R)(2) +

1

2n(I + A+ nB)
p2

+
I

2(I2 − A2)
‖V‖2. (76)



Home Page

Title Page

Contents

JJ II

J I

Page 13 of 28

Go Back

Full Screen

Close

Quit

The Peter-Weyl decomposition:

Ψ(ϕ) = Ψ(L,D,R) =
∑
α,β∈Ω

N(α)∑
m,n=1

N(β)∑
k,l=1

Dα
mn(L)fαβnk

ml

(D)Dβ
kl

(
R−1

)
. (77)

Here Ω is the set of equivalence classes of irreducible unitary representations of SO(n,R) and N(α) is
their dimension.
The two-polar decomposition is non-unique. Let W ∈ SO(n,R) has in every row and column exactly one
±1 element and nulls besides. Then

LWDW−1R−1 = LDpermR
−1, (78)

where Dperm is diagonal and differs from D by the permutation of diagonal elements. So, we must have:

fαβnk
ml

(
qπW (1, . . . , qn)

)
=

N(α)∑
r=1

N(β)∑
s=1

Dα
nr(W )fαβrs

ml

(
q1, . . . , qn

)
Dβ
sk(W ) (79)

for any matrix W of the above form. The same is true on the subsets M (k;p1,...,pk) ⊂ SO(n,R) × R ×
SO(n,R), where there is a coincidence between some of (q1, . . . , qn). Then W contains some continuous
part. The special and simplest case is the total degeneracy when D = λIn. Then L, R separately are not
determined and only LR−1 is well defined.
If α, β, m, l are kept fixed, then we can omit the symbols m, l and just write:

Ψ(ϕ) = Ψαβ
ml(L,D,R) =

N(α)∑
n=1

N(β)∑
k=1

Dα
mn(L)fαβnk (D)Dβ

kl

(
R−1

)
. (80)
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Dα are N(α) × N(α) quadratic matrices and fαβ are N(α) × N(β) matrices depending on deformation
invariants D(q).
Let us fix our attention on the physical case n = 3. Then ωab is expressed by the rotation vector k —
canonical coordinates of the first kind:

ωab = −εabckc, ka = −1

2
εab

cωbc, (81)

k ∈ [0, π] − SO(3,R), k ∈ [0, 2π] − SU(2) = SO(3,R). (82)

n = k/k — rotation axis.

W (k) = exp (kaEa) =
∞∑
m=0

1

m!
(kaEa)

m , (Ea)
b
c = −εabc, (83)

or explicitly:

W (k)u = u+ k × u+
1

2
k ×

(
k × u

)
+ . . . , (84)

W (k)ab = cos k δab + (1− cos k)
kakb
k2

+ sin k εabc
kc

k
. (85)

Generators of the left and right translations are given by:

La =
ka
k

∂

∂k
− 1

2
ctg

k

2
εab

ckbDc +
1

2
Da, (86)

Ra =
ka
k

∂

∂k
− 1

2
ctg

k

2
εab

ckbDc −
1

2
Da, (87)
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where D are generators of inner automorphisms:

Da = La −Ra = εab
ckb

∂

∂kc
. (88)

The following holds:
W (πn) = W (−πn) = W (πn)−1, (89)

so, for any n W (πn) are square roots of identity.
The covering group Spin(3) ' SU(2) is parameterized by k with k ∈ [0, 2π],

u(k) = exp (kaea) = cos
k

2
I2 −

ka

k
sin

k

2
iσa, (90)

ea = 1
2i
σa — generators of SU(2).

Now u(πn) 6= u(−πn), but u(2πn) = −u(n).
Casimir invariants are given by:

CSO(V,g)(2) = S2
1 + S2

2 + S2
3, CSO(U,η)(2) = V2

1 + V2
2 + V2

3. (91)

For n = 3 the family of Casimirs begins and terminates at p = 2. The Haar measure is proportional to

dµ(k) =
4

k2
sin2 k

2
d3k = 4 sin2 k

2
sinϑdkdϑdϕ (92)

for both SO(3,R) and SU(2). But if we wish to normalize the measure to unity, then some normalization
constant must appear. Otherwise SU(2) has the twice larger volume than SO(3,R), what is, by the way,
relatively sensible.



Home Page

Title Page

Contents

JJ II

J I

Page 16 of 28

Go Back

Full Screen

Close

Quit

The Peter-Weyl theorem becomes then:

Ψ(ϕ) = Ψ(L,D,R) =
∞∑

s,j=0

s∑
m,n=−s

j∑
k,l=−j

Ds
mn(L)f sjnk

ml

(D)Dj
kl

(
R−1

)
(93)

or with fixed values of m, l, s, j:

Ψsj
ml(L,D,R) =

s∑
n=−s

j∑
k=−j

Ds
mn(L)f sjnk(D)Dj

kl

(
R−1

)
. (94)

They satisfy eigenequations of rotational Casimirs:

‖S2‖Ψsj
ml = ~2s(s+ 1)Ψsj

ml, ‖V2‖Ψsj
ml = ~2j(j + 1)Ψsj

ml. (95)

And traditionally one uses eigenstates of ‖S2‖, ‖V2‖:

S3Ψsj
ml = ~mΨsj

ml, V3Ψsj
ml = ~lΨsj

ml. (96)

Similarly for %3, τ 3:
%3Ψsj

ml
nk

= ~nΨsj
ml
nk

, τ 3Ψsj
ml
nk

= ~kΨsj
ml
nk

. (97)

On GL+(3,R) s, j are non-negative integers and m, l, n, k jump by one from −s, −j to s, j. But
something similar may be done on GL+(3,R). One begins with SU(2)×R3 × SU(2) — the analog of the
two-polar representation,

Ψ(u, q, v) =
∞∑

s,j∈N/2∪{0}

s∑
m,n=−s

j∑
k,l=−j

Ds
mn(u)f sjnk

ml

(q)Dj
kl

(
v−1
)
, (98)
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where with fixed s, j other quantum numbers jump by one under the summation sign. But the summation
must be restricted only to two disjoint subspaces: one with both s, j half-integer and the other one with
integers.
In any case this must be so if ψψ is to be projectable onto GL+(3,R) (incidentally, it is not quite clear if
it must be so).
Let us quote the explicit expressions for the highly (affinely) invariant kinetic energy operators.
For models of internal kinetic energy left- and right-affinely invariant we have:

Taff−aff
int = − ~2

2A
Dλ +

~2B

2A(A+ nB)

∂2

∂q2

+
1

32A

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

− 1

32A

∑
a,b

(Na
b)

2

ch2 qa−qb
2

, (99)

where, however, something classically unexpected appears:

Dλ =
1

Pλ

∑
a

∂

∂qa
Pλ

∂

∂qa
=
∑
a

∂2

∂(qa)2
+
∑
a

∂ lnPλ
∂qa

∂

∂qa
. (100)

The “naively” expected term
∑

a ∂
2/∂(qa)2 appears when we substitute:

ϕ =
√
Pλ Ψ. (101)
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But this is for the price of additional “bad” potential Ṽ:

− ~2

2A
D̃ = − ~2

2A

∑
a

∂2

∂(qa)2
+ Ṽ, (102)

Ṽ = − ~2

2A

1

Pλ2
+

~2

4A

1

Pλ

∑
a

(
∂Pλ
∂qa

)2

. (103)

For the internal models right-affinely, left-metrically invariant, and conversely, left-affinely, right-metrically
invariant we have respectively:

Tmet−aff
int = − ~2

2λ
Dλ −

~2

2β

∂2

∂q2
+

1

32α

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

+

− 1

32α

∑
a,b

(Na
b)

2

ch2 qa−qb
2

+
1

2µ
‖S‖2 , (104)

Taff−met
int = − ~2

2λ
Dλ −

~2

2β

∂2

∂q2
+

1

32α

∑
a,b

(Ma
b)

2

sh2 qa−qb
2

+

− 1

32α

∑
a,b

(Na
b)

2

ch2 qa−qb
2

+
1

2µ
‖V‖2 , (105)

where α, β, µ are given by the previous formulas.
For the doubly isotropic d’Alembert model with the scalar inertia I we obtain:

Td.A.
int = −~2

2I
Dl +

1

8I

∑
a,b

(Ma
b)

2

(Qa −Qb)2 +
1

8I

∑
a,b

(Na
b)

2

(Qa +Qb)2 , (106)
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with Dl given by

Dl =
1

Pl

∑
a

∂

∂Qa
Pl

∂

∂Qa
=
∑
a

∂2

∂ (Qa)2 +
∑
a

∂ lnPl
∂Qa

∂

∂Qa
. (107)

Then again the substitution
ϕ =

√
Pl Ψ, (108)

eliminates the first-order derivatives but introduces a hardly treatable potential:

Ṽl = − ~
2I

1

P 2
l

+
~2

4I

1

Pl

∑
a

(
∂Pl
∂Qa

)2

. (109)

Although the kinetic energy operator may be in the d’Alembert case expressed by the usual Laplace
operator,

Td.A. = −~2

2I
∆n2

= −~2

2I

∑
i,A

∂2

∂ (ϕiA)2 , (110)

this is useless because the geodetic models predict infinite motion, and to be physically admissible, they
must be modified by the potential term V (Q1, . . . , Qn). And then only curvilinear coordinates, e.g., polar
or two-polar ones are useful and everything goes back to the previous treatment.
Similarly, for affinely-invariant models one can modify Taff−aff , Tmet−aff , Taff−met by the doubly isotropic
potential correction V (q1, . . . , qn).
The matrix generators of Dα will be denoted by Mα, so that for

W (ω) = exp

(
1

2
ωabE

b
a

)
(111)
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we have
Dα(ω) = exp

(
1

2
ωabM

αb
a

)
. (112)

If n = 3, then:
Dj(ω) = exp

(
ωaM j

a

)
. (113)

Obviously then [
M j

a,M
j
b

]
= −εabcM j

c. (114)

Let us introduce hermitian matrices of angular momenta:

Sαab =
~
i
Mαa

b, Sja =
~
i
M j

a. (115)

Their Poisson brackets have the form:
1

i~
[
Sja, S

j
b

]
= εab

cSjc. (116)

The advantage of their use is that differential operators ρab, τ ab, Ma
b, Na

b are algebraized. Let us
introduce the symbols:

−→
Sαabf

αβ := Sαabf
αβ,

←−
Sβabf

αβ := fαβSβab. (117)

The affinely-invariant and even rotationally-invariant Schrödinger equation

HΨ = EΨ (118)

splits then into family of equations:
Hαβfαβ = Eαβfαβ (119)
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where for any α, β ∈ Ω, fαβ is again the N(α)×N(β) matrix depending on qa. The problem is N(α)×
N(β)-fold degenerate.
Hαβ is an N(α)×N(β) matrix the elements of which are differential operators

Hαβ = Tαβ + V. (120)

Dα are irreducible, therefore the Casimir matrices:

Cα(p)az := SαabS
αb
c . . . S

αu
wS

αw
z︸ ︷︷ ︸

p factors

. (121)

reduce to ones proportional to IN(α):

Cα(p) =

(
~
i

)p
C(α, p)IN(α). (122)

One can show that the Schrödinger equations reduce to the above family with the following quantum
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counterparts of the classical kinetic energy:

Tαβfαβ = − ~2

2A
Dλf

αβ +
1

32A

∑
a,b

(←−
Sβab −

−→
Sαab

)2

sh2 qq−qb
2

fαβ (123)

− 1

32A

∑
a,b

(←−
Sβab +

−→
Sαab

)2

ch2 qq−qb
2

fαβ +
~2B

2A(A+ nB)

∂2

∂q2
fαβ,

Tαβfαβ = − ~2

2α
Dλf

αβ +
1

32α

∑
a,b

(←−
Sβab −

−→
Sαab

)2

sh2 qq−qb
2

fαβ (124)

− 1

32α

∑
a,b

(←−
Sβab +

−→
Sαab

)2

ch2 qq−qb
2

fαβ − ~2

2β

∂2

∂q2
fαβ − ~2

2µ
C(α, 2)fαβ,

Tαβfαβ = − ~2

2α
Dλf

αβ +
1

32α

∑
a,b

(←−
Sβab −

−→
Sαab

)2

sh2 qq−qb
2

fαβ (125)

− 1

32α

∑
a,b

(←−
Sβab +

−→
Sαab

)2

ch2 qq−qb
2

fαβ − ~2

2β

∂2

∂q2
fαβ − ~2

2µ
C(β, 2)fαβ.

One must not confuse the representation labels α, β with the inverses of the multiplicative constants. We
apologise for this inconvenience. It is seen that there is no very essential difference between those three
expressions; only one in multiplicative constants and with the use of spin and vorticity Casimirs. Those
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formulas are valid for any spatial dimension n. In the directly physical case n = 3 we have obviously
α = s = 0, 1/2, 1, . . . ∈ N/2∪ {0}, β = j = 0, 1/2, 1, . . . ∈ N/2∪ {0} when we admit half-integer values of
angular momenta and vorticity. If we admit only integer values, then obviously s, j ∈ N∪{0}. Obviously,
in three dimensions we have C(2, 2) = s(s+ 1), C(j) = j(j+ 1). Then the constant terms in the formulas
(124), (125) are simply given by ~2s(s + 1)/2µ, ~2j(j + 1)/2µ. Those corrections to the affine-affine
model are very interesting and have the structure interesting for any physicist. The term ~2s(s+ 1)/2µ is
interesting as the rotational connection to the situation when the purely deformative part is established
and later on excited to quicker rotations. From this point of view the correction term ~2j(j + 1)/2µ in
(125) is perhaps even more interesting because it may be interpreted as a kind of internal quantum term
following from the SO(3,R)-group or its covering SU(2). This might be something like the isospin. To
combine them, i.e., to obtain some combination of terms ~2s(s+ 1)/2µ, ~2j(j + 1)/2µ, we should modify
more deeply the primary affine-affine model, e.g., to use the quantization of kinetic energies like (290),
(291) from the classical part of this text.
Let us observe that the use of the two-polar description together with the Weyl-Peter theorem enables
one to simplify the expression for the scalar product, reducing it to the integration over the qi-variables
and the series summation over discrete variables. Namely, if we take two wave functions Ψ1, Ψ2 with the
deformation profiles f1, f2, then one can easily show that:

〈Ψ1 | Ψ2〉 =
∑
α,β∈Ω

1

N(α)N(β)

∫ N(α)∑
n,m=1

N(β)∑
k,l=1

f1
αβ
nk
ml

f2
αβ
nk
ml

Pλdq
1 . . . dqn. (126)

When we restrict ourselves to the subspace of wave functions with fixed labels α, β,m, l and use the
simplified N(α)×N(β)-matrix amplitudes

Ψαβ
(
L; q1, . . . , qn;R

)
= Dα(l)fαβ

(
q1, . . . , qn

)
Dβ(R−1), (127)
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this scalar product may be reduced to:〈
Ψ1

αβ | Ψ2
αβ
〉

=
1

N(α)N(β)

∫
Tr
(
fαβ+

1

(
q1, . . . , qn

)
fαβ2

(
q1, . . . , qn

))
· Pλ

(
q1, . . . , qn

)
dq1 . . . dqn. (128)

For the general case (127) may be written as:

〈Ψ1 | Ψ2〉 =
∑
α,β∈Ω

1

N(α)N(β)

∫
Tr
(
fαβ+

1 fαβ2

)
Pλdq

1 . . . dqn. (129)

where, obviously

Tr
(
fαβ+

1 fαβ2

)
=

N(α)∑
n,m=1

N(β)∑
k,l=1

f1
αβ
nk
ml

f2
αβ
nk
ml

. (130)

The weight factor Pλ may be eliminated from (129) by (108).
Let us mention again the usual d’Alembert models. Now for the isotropic inertial tensor and for the
doubly isotropic potential energy we can also write that the Schrödinger equation

HΨ = EΨ (131)

for the isotropic potentials reduces to the family:

Hαβfαβ = Eαβfαβ, (132)
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where

Hαβfαβ = −~2

2I
Dlf

αβ +
1

8I

∑
a,b

(←−
Sβab −

−→
Sαab

)
(Qa −Qb)2 fαβ

+
1

8I

∑
a,b

(←−
Sβab +

−→
Sαab

)2

(Qa +Qb)2 fαβ + V
(
Q1, . . . , Qn

)
fαβ. (133)

It is clear that without the potential term, i.e., when dealing with the geodetic model, all motions are
infinite and there are no elastic vibrations, just like in the corresponding classical theory.
We have seen that in classical mechanics the geodetic affinely-invariant models on SL(n,R) may describe
elastic vibrations. Moreover, there exists a sharp threshold between finite vibrations and infinite escaping
motions. It is given by some relationship between spin and vorticity. In GL(n,R) the same qualitative
picture may be obtained by introducing some stabilizing dilatational potential. By analogy something
similar exists in quantum theory. Let us consider this again in the special, particularly simple model in
n = 2. The Haar measure on GL(2,R) may be expressed as:

dλ
(
α; q1, q2; β

)
=
∣∣sh (q1 − q2

)∣∣ dα dβ dq1dq2, (134)

where, as usual q1, q2 are logarithmic deformation invariants and α, β are polar angles parametrizing
respectively L and R in the two-polar decomposition. As usual we introduce new variables:

q =
1

2

(
q1 + q2

)
, x = q2 − q1. (135)

In certain problems it is also convenient to introduce the mixed angular variables:

γ =
1

2
(β − α) , δ =

1

2
(β + α) . (136)
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Therefore,
dλ (α; q, x; β) = |shx| dα dβ dqdx, Pλ = |shx| . (137)

According to the Peter-Weyl theorem, or more directly, to the Fourier theorem, we have the following
expansion for our wave functions on GL(2,R):

Ψ (α; q, x; β) =
∑
m,n∈Z

fmn(q, x)eimαeinβ. (138)

For the model T aff−aff
int we have the following reduced expression for the kinetic energy Tmn:

Tmnfmn = −~2

A
Dxf

mn − ~2

4(A+ 2B)

∂2fmn

∂q2

+
~2(n−m)2

16A2sh2 x
2

fmn − ~2(n+m)2

16A2ch2 x
2

fmn. (139)

For the metric-affine and affine-metric models Tmet−aff
int , T aff−met

int we obtain respectively:

Tmnfmn = − ~2

I + A
Dxf

mn − ~2

4(I + A+ 2B)

∂2fmn

∂q2
(140)

+
~2(n−m)2

16(I + A)sh2 x
2

fmn − ~2(n+m)2

16(I + A)ch2 x
2

fmn +
I~2m2

I2 − A2
fmn,

Tmnfmn = − ~2

I + A
Dxf

mn − ~2

4(I + A+ 2B)

∂2fmn

∂q2
(141)

+
~2(n−m)2

16(I + A)sh2 x
2

fmn − ~2(n+m)2

16(I + A)ch2 x
2

fmn +
I~2n2

I2 − A2
fmn,
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where
Dxf

mn =
1

|shx|
∂

∂x

(
|shx| ∂f

mn

∂x

)
. (142)

Of course, for the purely geodetic models on GL(2,R) the spectrum is continuous, because dilatational
motion is free. To avoid this fact we must introduce to the Hamiltonian some dilatation-stabilizing
potential Vdil(q). This may be either the potential well or some harmonic oscillator with large elastic
constant. Of course, the problem is also explicitly separable for any potential of the form:

V (q, x) = Vdil(q) + Vsh(x). (143)

The corresponding solutions of the time-independent Schrödinger equation will be sought in the product
form:

fmn(q, x) = ϕmn(q)χmn(x). (144)

It is interesting that there exists a discrete spectrum for χ-terms in SL(2,R) even in the purely geodetic
models without any shear potential Vsh(x). This depends on the mutual relationship between “gyroscopic”
quantum numbers m, n. If |n−m| < |n+m|, then the attractive ch−2-term becomes dominant at large
distances, when |x| → ∞, and the spectrum for χ is then discrete. Conversely, it becomes continuous
when |n−m| > |n+m|. For the affine-affine model (139) the spectrum is not bounded from below.
Conversely, for the affine-metric nad metric-affine models the kinetic energy may be bounded from below
and so is the spectrum. This happens for certain open range of parameters I, A, B.
Similar phenomena hold for the dimension of space greater than 2, because everything follows from the
commutation rules (structure constants) of SL(n,R).
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***

Thank you for your attention!

***


