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When dealing with the low-dimensional Lie groups and their algebras, one is
faced with various mutual identifications. Some are obvious, some not directly
visible. There are no counterparts in higher dimensions. Are those identifications
“accidental” or just “mysterious”” The question has to do with the anthropic

principle.

The universal covering groups of SO(3,R) € GL(3,R) and SO(1,3)" ¢ GL(4,R)
are isomorphic with SU(2) € GL(2,C) and SL(2,C) C GL(2,C). The groups
SL(2,R) ¢ GL(2,R), SO(1,2) c GL(3,R), SU(1,1) C GL(2,C) have the same
Lie algebras. The special pseudounitary group SU(2,2) C GL(4, C) is isomorphic

with the universal covering group of the Minkowskian conformal group CO(1, 3).

The special orthogonal group in four dimensions, SO(4,R), and the Cartesian
product SO(3,R) x SO(3,R) have isomorphic Lie algebras.
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IMPORTANT: n = 4 is the only exceptional case among all SO(n,R) with

n > 2 when the semi-simplicity breaks down.
SO(4,R)" ~ SO(3,R)" x SO(3,R)’

but
SO(4,R) # SO(3,R) x SO(3,R).

Zo = {I, —I} - the two-element center of SU(2).
SO(3,R) ~ SU(2)/Z,

7= A =

center of SU(2) x SU(2). It contains three two-element subgroups, in particular

H = {(1, 1 (=t



It is clear that

(SU(2) x SU(2)) /G = SO(3,R) x SO(3,R),
(SU(2) x SU(2)) /JH = SO(4,R

~—

Hi -t 07 7 oL
EU2SESUR A, — SUR2)1 503, R,
(S es U i —— SO R=ESU2Tn
n =3, GL(3,C) and its real form GL(3,C), U(3).

May the three “colours” of fundamental strongly interacting particles have some-
thing to do with affinely-deformable body? NO ANSWER.



The basic 2 x 2 Pauli matrices:

10 01 0 —: 155
0-0212: y 01 = y 02 = . ) OfEl = .
01 10 1 0 07|

“Relativistic” notation: o, £ =20,1,2,3,¢= 1,2, 3.

Remark: they are basic in double sense:

1. Basic Hermitian forms in Herm(C?* ® C?*), twice covariant.

2. Basic Hermitian linear mappings of C?, elements of L(C?), Hermitian in the

sense of scalar product d (u,v) = du0’.



One often uses another bases:

1 il 1

7’02500:—127 o= o

a = 17273'
9 g a

or, in some problems

9M = 2—Z,O'Iu.



Remark:

e when o, are linear mappings, then the “relativistic” conventions are mislead-
ing:

T — axa t

preserves oy and there is no Lorentz mixing.

e relativistic conventions are satisfied in the manifold of Hermitian forms:

no,0-— |detare Lo L € 50(1, 3).
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Nevertheless we use this convention to simplify notation, e.g., when SU(2) is

parametrized:

=i = (RO
. k =0 k

Fee—C0S— T Sin—— et

% k 2 2

k - rotation vector, k € [0, 7] on SO(3,R), k € [0,2 7] on SU(2).



The covering SU(2) — SO(3,R) is given by:

SU(2) 3 v — R € SO(3,R), where  vu(k)v™! = u(RE).

On SU(2):

u(0) = u(On) = Iy, u(2mn) = —Iy, Aol — e

On SO(3,R) for any i we have



It is clear that the parameters z* are constrained by:

($0)2 oL (331)2 e ($2)2 AL (933)2 i

Description is also unique, therefore
SU(2) ~ §3(0,1) Cc R*,

the unit sphere.
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One uses also spherical coordinates in the space of k,
k' = ksind cos o, k? = ksin 9sin o, k® = kcos .

k® are canonical coordinates of the first kind.

Strange, canonical coordinates of the second kind are only exceptionally used:

u{a, 8,7} = exp(an) exp(B72) exp(y73).

Unlike this, Euler angles are commonly used:

u [P, 9,9 = exp(p73) exp(Vn) exp(¥rs).
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The Killing tensor multiplied by (—2) is positively definite and given by:
2 LTS 2 2 K
ds® = dk? + 4sin® = (dﬁ + sin ﬁ)dgb = dk* + 4sin® —dn dn,
or more geometrically:

k
g = dk ® dk + 4sin’ 5 045 dn* @ dn®.

[t is invariant under translations:
SU(2) 3 z — kxl € SU(2), =S )
ds? is (—2) restriction of
g5 = ()l (dr )2k (dra (e
to S3(0,1). The isometry group:

SO(4,R) = (SU(2) x SU(2)) /H.



The common Lie algebra:

SU(2) x SU(2) = SO(4,R) = SO(3,R)’ x SO(3, RY.

Indeed, denoting the standard basis of SO(4,R)" by £ and introducing;:
s e
Nl == 501’ N2 =T 802, NS = 503’

1 1
Xi:§(Mi+Ni)7 Yz':§(Mz'—Nz’),

we obtain:
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0 0 I
-1 _ 7 5ABD D
g ak®ak+481n2§ A® B

Inverse metric:

Dy = 5ABCI<:B(9,% - generators of u — vuv .

Duality (modified):

0
dk,— ) =1 dl D oa==0
< 2 ak> J < 9 A> )
4 0 A A €
<dn,%>:0 A <dn,DB>:8 e
Coordinate expression of the Killing metric:
et ]{22 - ]{2
= N e ind
9T dan’E ( 4sin2§>nn
i 45
95 = 13 sin’ 5 Ot (1 72 sin’ 5) ey
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Vector fields generating left and right translations (right-invariant and left-invariant):

0 1 k i
! B nC
B e = eEE=
A nAak 200 2€ABCTL il 54
0 1 k 1
TEA = 'I’LA% == 5 cot §€ABCHBDC = éDA’
)=
Commutation rules:
['E4,'Eg| = —ea5® 'Eq, ["E4,"Eg = e48° "Eq,
[ZEAarEB] = 07 [DA7 DB] = _5ABC DC'-
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The dual Maurer-Cartan forms 'E4, "EB:

<ZEA,ZEB> S 6AB> <rEA71°EB> e 5AB-

k
CREe = = o 5 eABCn pdne + sin k dn?,

k
e = > eAB8Cnpdne + sin k dn?,
g = 64p'FAQ'EP = 6,5 EAQ"EE:
g—l — 5ABZEA ®Z EB = 5AB7"EA® TEB

16



Peter-Weyl theorem on SU(2), SU(2) x SU(2), etc.:

V() = Y el Dimelu) = Y Tr (¢ DI(w)

jmk

\IJ(U,U) = Z ClkmsnrDlmk(u)Dsrn(v)'

ls
mk rn

D7 - (25 + 1) - dimensional irreducible representation of SU(2).

On SU(2) x SU(2) - C-coefficients arbitrary.

On SO(4,R) ~ (SU(2) xSU(2))/H - C-coefficients vanish when [, s have different

halfness, i.e., 2, 2s have a different parity.
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The group property:
D’ (ugug) = DY () D (up),  D’(Iy) = Iyjyu,

implies that

D (u(k)) = exp <% k’“Sja) :
where 87, - (25 + 1) x (25 + 1) matrices of the j-th angular momentum
e s =
B ay©Ob] = Eab Oc-

D7 satisfy differential equations:

h : e h : —
= ZEAD] = S]AD] s TEAD] = DjS]A;
(] 7

h : : :

_.DADJ = [SjAyDJ} )

1

—1*Y B BuD) = B> TEA B D = Bj(j + 1) D7,
A A
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There are a few mechanical problems based on SU(2) x SU(2):

e Two-gyroscopic system with SO(3,R) x SO(3,R) as a configuration space,

or some spinorial modifications in SU(2) x SU(2) or its quotients

e Rigid body in Einstein Universe S3(0, R) with the internal space ruled by
SO(3,R) or SU(2).
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General remarks:

(M, g) - Riemann space of translational motion.
F (M, g) - the connected component of the bundle of orthonormal frames - total

configuration space.

F(M,g9)2e=(...,e4,...) at z € M, where:

gz (ea,e5) = g(z)ij €'a’ p = ap.

Motions: R 3t — y(¢) € F(M,g), (dz'(t), e a(t)).
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Generalized velocity:

d—aji % deiA — not vectors
) di : :

Covariant velocity vectors:
= dx’ deb4 : ; dxF
—,—€e'y ) =—,—+T1" t))elalt) — J=
<dt’Dt€A> <dt’ e ]’“@())“()dt)

Notation: :
Bty

Dig.

e
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Kinetic energy:

o G 1
T:T;fr"l’ﬂnt:m s <

7

m =S | e
= gijv'v’ + 5 et

1 5 5
= % o - 511 Q5 QL L JAB.

22
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Dt

i)

el )

Dt

.B> JAB



. D N D -
e (— chuinlacis Q4p = eAZ-E e'p =et; O elp,

; i
=t =t —

dt’
Qij = _gijklgli = _jS’ QAB = —(SgcéADQCD = _QBA-
e’ 4 are not independent variables. The best solution to fix some non-holonomic

reference frame in M, (..., E4,...) and to express the moving orthonormal bases

is as follows:
ea (2(t)) = Ep (x(t)) L° a2),

were [LB A} - an orthogonal n X n matrix parameterized in terms of some fixed

coordinates in SO(n, R).

23



If M is an n-dimensional semi-simple Lie group G with the Killing metric g, then
F(M, g) becomes identified with G x SO(n,R). There are two identifications
based on the left- and right-invariant fields:

I i B
=t ea—CF, s ¢

F(G, g) becomes the Cartesian product G x SO(n,R). In our case F(M,g)
becomes M x SO(3,R).

We assume the simplest isotropic case:

JAB = I(SAB.
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In a manifold M the angular velocity splits:
QAB = Q(TZ)AB = Q(dT)AB,

the sum of relative (internal) Q(rl) and the drive Q(dr) terms. They are given

respectively by:

i
Qrl)’p = LICE—dtD,
ﬁ(dT)AB = LilAKFKLMLLBLMN@N,
e
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['4 5 are non-holonomic components of the Levi-Civita connection:

B — B (B BB B E
1

= 5 9" (Gmjk + Gmkj — Gikm) -

On SU(2) the Killing-Levi-Civita connection is:

1
g = = e pc.
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In SU(2) x SU(2) we replace the first factor by S3(0, R) - three-dimensional sphere

with radius R. We perform the rescaling:

r:=Rk/2,

ol =l

[ | =

WNownle Rele? @ =
ESolthFPoleer— R

Metric tensor:
ds’ = dr’+ R’sin’ = (0 + sin® 9dy”) =

— dr’+ R sinQ% T

Geometrically:

g(R) = dr ® dr + R’sin® % S5 dn? ® dn® =
= 648'E(R)* ® 'E(R)? = 643" E(R)" ® "E(R)®.
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Renormalized co-bases and bases are given by:

Flasssd
R = a2 et %8ABCannC + 5 sin ErdnA,

R0
S i %8ABCannC = sin —TdnA,

R
0 1 i

lE(R)A = TLAE = E COt% €ABCnBDC S EDA,
0 1 1

TE(R)A = HAE = E COt% €ABCTLBDC — EDA,
R l T C B 8
DA:E(EA_ EA)Z&ABTW
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Index-free form:

ndr + Rsin® }%ﬁ X dn + E sin Erdﬁ,
ndr — Rsin? }%n X dn + gsin 2Erdn,
n%—%co’c%xﬁ %E
n%—%{cot%nxﬁ %E
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The metric on S3(0, R) follows from:
o = (gt o ) A )y = )

by substitution:

i e, :
xlstmEsmﬁcosgp ; :B2:Rsm§smﬁsmgp,

r r

73 = Rsin}—%cosﬁ . oxt= RCOSE.
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The R-gauged fields 'E(R), "E(R) satisfy:

'E(R)4,'E(R)p] = —}% ea” 'E(R)c,
"E(R)a,B(R)5) = = <as "B(R)e

Falm),, ea)E] = O

When R — oo, we obtain Euclidean relationships:

5,

z l e : i el
pUE S
lim=BERe——Tlm B —d
R—o0 R—o0
}%ijgog(R)ij = 0ij-

On the fibers of F'(M, g), all identified with SO(3,R), or its covering SU(2) we
are given vector fields ' E4(3) and duals ' E4(5) obtained from 'E4(k) and ' E4(k)
by replacing k — 3. The same for "E(3), "E4 ().
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Angular velocities:

~ . _drd ~ , o dd
Qi (R)° = EDJ(R7 T)%a Qi = EDj(%)ﬁ-
The total kinetic energy becomes:
R 1 i ) A Bios i 5 A B
T = i B AB Qtr(R) Qtr(R) AB th Qtr(R) i
2 R R
I A (OB
=t 5 5AB Qint Qim‘?
T eV -Lagrangian.
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Legendre:

or, equivalently:

)

n

it A

wlt ZEZ' =N

TR

o
39{71“ A(%)Wu

oT ~

= = TEZA(Ra /F)plv
0% (R)A

oT :

— = e 5.
aQintA A< )
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Duality:

e BB B R E R
(bR S o (O (R O
(Str Sl ( ) QintA)a

(pmz) = (en
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Poisson brackets:

{Sir(R) 4, Sur(R)p}
{0 (R)a, S (R)5 }
{Sr(R)a, Sr(R)5 }

{Sint A, Sint B}
{Sint 4, Sint B}
{Str(R) 4, Sint B}

35

2
EEABCStr(R)C'y

) =
_EgABCStr(R)Ca

0,
c
i

~

c
—EAB Sint C)



Legendre explicitly:

Str(R)A =

Simf A=

Inverse Legendre:

Q. (R4 =

A
Qim‘ S pm—
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Hamilton equation:

dF
— ={FH
dt {F H,
i.e., in the potential case:
7 e g o i
I tr Al == mR2 A int BRtr C A,
d 1
B = ——e 9SG RS N
g it A ngA S o N

We— S R V(e e
NA = {Sznt A V} == _ZE(%)AV(f7 ;f)

Similarly in the non-potential case.
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Kinetic energy in canonical terms:

[+ mR>— ity

e 2 g —
T == %Str(R) % Str(R) Gt @Str(R) E Sint =+ W‘Smt 5 Sinta

d

= S 2 )
de= I g
= e R Str(R) X Sint.

Equation of motion independent on I, but the total system for (f, %, Str,

depends on I.
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Constant of motion:

_ R — _
J = 5 Str(R) ‘|‘ Sint7
g157"(17%) § gtr(R)y gint £ gint-

The only time-dependent variable: the angle between the plane spanned by
Sir(R), Sint and a fixed plane containing J.

Non-geodetic problems - very difficult.
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Quantized problems. Wave mechanics on SU(2) x SU(2), S3(0,R) x SU(2),
S3(0, R) x SO(3,R), etc.

Angular momenta:

r— —
Sir (R)4 = o T98] (R,T) rm’
h 0
Sinta = = ‘E™y (3) o’
The co-moving version:
Q h rm — 0
A = E A(R’T)é%“_m’
~ h 0
Simta = —"E™4(5) 92
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Quantum Poisson brackets:

1 2

E [Str (R)A , Sty (R)B] = E 5ABCSt7‘ (R)C )
TS ~ % .
E {Str (R)A S, (R)B] — _E €ABOStr (R)C )

%[Str (R)Aagtr (R)B] =

and without the 2/R-multipliers for the internal angular momentum:

1

E[SintA;SmtB] — T
e - =
E [SintAaSintB} = —SABC St
i =
E |:SintA7 SintB} = 0.
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Kinetic energy operator is given by:

1 1
qpCe = el Sir(R) 4 Str(R) 5 + = e Sir(R) 4 Sintp +

i

] 1
S 5 (f S > O DS

mR?

The Hilbert space L2(S?(0, R) x SU(2)) is meant in the sense of measure ugr ® p,

where:

2

dug (u(R,7)) = R’sin’ E sin ddrdidy = i sin }—%dgr

4
du (v (%)) = 4sin® Esm Vd»edddp = —; sin —dg%
»
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The scalar product is:

() | W) = / T, ) Wl v)dpae (1) d1s(w).

The group volumes are then:
u{S%(0,R)) = 2r’R’, u(SU(2))=167% u(SO(3,R) i}

There is a conflict with normalizing the measure on compact groups to unity.
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When using the Peter-Weyl theorem, the action of Sy 4 on wave functions is

algebraically represented by the following action on expansion coefficients:

[Cli® ] = L% O s Slpm] :
the summation over p is meant here.
Similarly, the action of spin operators S;,; 4 is represented by:
[Clim™nr] = [Clim®np Spr]

again the summation over the matrix index p is assumed.

The % -factor is important. When R — oo, distances between energy levels tend

to zero. The spectrum becomes “continuous”, just like in R3.
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All terms of the kinetic energy operator T do commute with the operators:

(Sl s iS5 (S —uls s .

Thus, s, j are “good quantum numbers” to label the stationary states of:

4 BIE= IE

Those basic states, labeled partially by s, J satisfy the system of algebraic
elgenequations:

AB il l l
0= k'pan SA pmSBsqr =AC kzmsnr-
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There is the following relationship:

2 N 4 R 2
E_mR2(A+l(l+1)h)+2<I+mR2>s(s+1)h.

It is clear that A and I(I + 1)k? are R-independent, and so is the first of s(s +
1)-terms, proportional to % With any fixed numbers [, s, there is a complete

degeneracy (2k + 1)(2n + 1) with respect to k, n.

When R — oo, the spectrum of translational quantum numbers in S3(0, R) be-
comes “almost continuous”. Unlike this, the internal spectrum remains discrete,

just one of the spherical top.

When some potential is present, the problem becomes very difficult.
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The pair of rigid bodies in Euclidean space

@ = SU(2) x SU(2) or some quotient

Kinetic energy of a single rigid body:

ds

3
1 P o~
2 _E I QAQ QA TEA' -
= = i) dbz

> - rotation vector.
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The two-body system:
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Poisson brackets are obviously:

{834,814} = —cas“S[Hc,
{§m §[X]B} — 5%
In quantized theory:
a iz = onr g e e Do)
S[%]A—; E A(%)a%a, S[)\]A— : E A()\)a)\a.

S[#]4, S[\4 acting on coefficients are as follows:

[Clkmsnr] = [Slkpclpmsnr} )
[Clkmsnr} =" [Ssnpclkmspr} .
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Kinetic energy operator acts on the C- matrices on the left, through multiplication

by:
’ L 2 : 1 Qsry12

When the tops are spherical:

[Clim®nr] = [R2 (UL +1) + 8(s + 1)) Clin®ar] -

Also some gyroscopic coupling is possible in 7T

e —
e Zmu S5 +5221A(2)S[/\]A +

N
s
&
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In the four-dimensional language:

where

(in SO(4, R) there are two of them).
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The possibility: . .
=—(M-M+N-N)+-—M-N
Bt R h R st 2 LR

is to be rejected, because M - N is a pseudoscalar.

But one can try to assume:

e ==
_E(M'M+N'N)+E(M'N)’

-forth order kinetic energy.
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Appendix - Bertrand model

r r E
== Rt e ) = = = =
§ SoE g g
Conformal mapping;:
4
g (d€® + &2 (d9* +sin®¥dy?))

B

e :
ds® = >
1+&/R)

(d€* + €%dn - dn)

or in tensorial language:

(dé ® dE + %5 dn? ® dn®) .

= e /Ry
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The projective mapping:
k
0 = 2tan —,
2

shows that there are two Bertrand potentials:

k
‘/03022 t C ‘/;0:__ t2_7
> tan” 7, 5 ot 5

and of course

Ye=—sconst-

o4



Thank you !




