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Classical ideas

Configuration space of an n-dimensional affinely-rigid body is identified with
Q = GAf (n,R) ~ GL (n,R) ®; R".
R" - the center of mass motion, Qi = GL (n,R) - internal degrees of freedom. In

continuum case rather: Qy; = GL"(n,R)

In more sophisticated terms: (M, V') - the physical affine spaces of dimensional n, and

(N, U) - the material space of the same dimension n.

V', U - the linear space of translations in M, N. The fixed, time-independent positive

measure 4 on N - the material mass distribution.



Lagrange center of mass in N; v € N such that
/ U dp(a) =0

If ® € AfI (N, M), then vp := ® (v) - position of the center of mass in M.

Therefore:
GVl (U5

Gl



The inertia:

® I11aSS:

M=/du(a),

e inertial tensor:
S = /aKaLdu o=
Kinetic energy - summation over the body elements:
Me——drtdr=—1 —dy sl
T:Tr ,I;n:_z__ aYij S
) e
Pitting=VE==N=—"T— 3V —R” (Qn, — GL(n; Ri:

M dz*dz 2 dot dy
T = Tr ﬂn i L Tz o
e e, dt+2r< dt dt)



Lagrangian:

Legendre transformation:

L=T-V(z,).

o = Ol o
e en 0, O
Explicite: : .
da’ A do’p pa
=V i = Gij e



Hamiltonian:

1 1 - /
H:T+V:Ttr+Tint+V:mg” py;pj+§JABpA¢ij gt

jAC' JCB = 5AB-
Action of GL(V'), GL(U):
A EE@A s Sl S A e L

B e GL(U): LIU,V)> e~ oBeLlU,V).

w— ApB non-effective kernel:

{(Idy,¢'Idy) : L € RT}.
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Degenerate dimension, deformable coin

gioa=—sdlitiadlincadimala—yn.

Q = AM(N, M) = M x LM(U, V),

AfM(N, M), LM(U, V) - monomorphisms

i = ot + g a

The n X m matrix [gpi K] has the rank m



AeGL(V): LMU, V)3 e~ Ap e LM(U,V), - transitive action

BeGLWU): LMU,V)> ¢+~ 9B e LM(U,V). — non-transitive

Only such 1, @9 for which ¢;(U) = p9(U) may be joined by right action.

Let us fix some ¥ € LM(U, V). Then LM(U, V) may be obtained as follows:

LM(U,V) 5 ¥ — o = AV € LM(U,V), A€ GL(V).

What is the stabilizer group H[W] C GL[V]? It preserves both W(U) C V but also
every element of U(U).



Let us put: U = R™ V = R" and assume V(U) to have zeros at (n — m) places

[al, a0, ...,O]T,

1\ (al, i am) ey , o — (n—m) x 1 zero matrix

Then H is given by:
A
D=l

)

I,, - m X m identity matrix, A, B -m X (n —m) and (n — m) X (n —m) matrices, o -
(n —m) x m zero matrix. A, B involve m(n —m)+ (n —m)? = n(n — m) parameters
and GL(n,R)/H: n> — n(n — m) = nm parameters, the dimension of L(m,n) on
LM(m,n).



H is indeed a subgroup:

I A
OBl

[ A
OBQ

I AiBy + Ay
0 BlBQ

Affine velocity:
dy A A =
Q= Q=p 1 =010
S s
defined for m = n do not exist when m < n. More precisely, the righ inverse p such
that pp = Idy does not exist at all. The left inverse A\, Ap = Idy does exist but is

non-unique; various version coincide only on ¢(U) C V.

But affine spin do exist; they are momentum mappings (Hamiltonian generators) of

the affine group,

' o S A e
D=ty L R
But remark they are not spatial and material components of any object, because there

is no isomorphism between U and V. o



The canonical spin and vorticity are also defined:

Szj i Ezj _gikgjlzjlk’

Vi = s 0 mnhic
Hamiltonian generators of spatial and material rotations.
Similarly, the translational momentum p; gives rise to the material one py:

DA =Dip'y
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Poisson brackets are given by structure constants of groups:

{Eij, Ekg} = (5i12kj — 5kj2i1, {Zi]’ Gl $ipj,p/€} = 5i]§pj,

{pi,pj} =0,
{5+ a'p;, Th + 2P} = 64 (25 + 2Ppy) = 0% (B4 + o)

For the material affine spin the following holds:
= 00pr b s
and besides:

{5, 5] 2
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Besides, the following Poisson brackets hold:
{zhpi} =0,  {¥'ap"} =064

We do not quote similar formulas for Sij, VAp in terms of structure constants of
SO(V, g), SO(U,n). If F depends only on the configuration (z, ), then:

: s - OF
{Z ]7F} _SO Aa@j {ZABaF} = _SpkBaspkA'

Let us also quote the covariant Green tensor and contravariant deformation tensor:

~

E =i e =

analytically:

Gap = gij0" 4¢ B, C A
13



In matrix terms:
G=¢Tp, C=pg.

In the case of non-degenerate affine bodies, m = n, we based on the polar and two-

polar decompositions:

¢ = RL = AR, o =VDU!,

R, V, U €SO(n,R), and L, A = RLR™! are symmetric and positively definite, D is

diagonal and positive.
There are counterparts in the mechanics of degenerate affine bodies, when m < n.

So, we write:

p=R

(0]

where R € SO(n,R), L € Symm(m,R), o is the (n — m) X m matrix made up of

Z€Tros.
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DimSO(n,R) = n(n — 1)/2, dim Symm(m,R) = m(m + 1)/2. It is seen that for

general values of m, n the total number of these parameters,

nn—1) m(m+1)
2 = 2

does not equal the number of internal degrees of freedom, i.e., to (nm). Because of some
redundant variables the configuration space cannot be identified with the Cartesian
product SO(n,R) x Sym(m,R). Because the subgroup SO(n — m,R) acting on the
(n —m)-tuple of the last variables in R" does not affect when multiplying it on

0
the left.
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Let us take the subgroup K C SO(n,R) composed of,
s @
0 |

where I, is an m X m identity matrix, o is (n — m) X m zero matrix and u € SO(n —

B

m,R) is an arbitrary (n —m) X (n —m) rotation matrix. The subgroup K, isomorphic
with SO(n — m,R) is (n — m)(n — m — 1)/2-dimensional. The quotient manifold of
left cosets, SO(n,R)/K, has the dimension n(n —1)/2 — (n —m)(n —m — 1)/2 =
mn — m(m + 1)/2. The configuration space of internal (relative) degrees of freedom
Qe is diffeomorphic with (SO(n,R)/K) x Sym(m,R). And the Cartesian product

is an mn-dimensional manifold, just as Qi = LM(m,n, R) itself.
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Let ¥ € LM(U,V) be a reference configuration, W(U) C V a linear subspace and
K (W) C SO(V, g) - a subgroup preserving every point of W(U), the more W(U) itself.
It acts trivially on W(U) and is the group of rotations on W(U)*.
manifold SO(V, g)/K(¥) describes rotational degrees of freedom. Without using W:
this manifold is F(V, g;m), Stiefel manifold. When V = R" U = R™, F(V, g;m) =

SO(n,R)/SO(n —m,R).

The quotient

Remark:

Stiefel manifold differs from Grassmann manifold,
SO (n,R/SO (n —m,R)) x SO (m,R).

Grassmann dimension equals m(n —m).
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The "polar" decomposition identifies the internal configuration space with:

(SO (n,R) /SO (n —m,R)) x Sym (m,R).

Fortunately when m = n—1 (physically 2), then SO(1,R) = {1} and SO(3,R)/SO(1,R) =
SO(3,R), and

0= SO0 RicSvi2 RE
The “two-polar” decomposition has the form:

D

(0]

el =

V €S0O(n,R), D =diag(Dy,...,Dy), U € SO(m,R).
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Physically,when n = 3, m = 2 the configurations are correctly represented by the

triples (V, D,U). The “polar” and “two-polar” decompositions have the forms:

£ « A0
o=@ ¢y w=V |0 5| U0
@0 00
cosf) —sind
where R € SO(3,R), U[f] = € SO(2,R), and
sinf) cosf

== =00 = =0

SO(3,R) is parametrized by local coordinates like e.g., Euler angles, rotation vector

etc.

g



We introduce angular velocities in co-moving representation:

0 W3 —Ws
w=R" 1dR 0

| 21
w9 (0N 0
0 ==

= v—1dv - )(()3 X2
Nl

dU dU dd | 0 —1

9 =U" — :
L dt — dt T dt [1 0 ]
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The internal kinetic energy in the “polar” representation has the form:

1 | :
T=?H< wﬁPﬁ( w>+§ﬂ(1§)

The three terms are interpreted as:

LJL of LJL of

0 OTL*TTL

o OTL*TTL

1. T, - rotational part coupled to the deformation matrix L.

2. Trot—qef - Coriolis term - coupling between angular velocity and the deformation

velocity.

3. Tyet - the kinetic energy of deformation.
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Explicite:
= Trot + Trot—def + Tdef )

where

TP = b2 i S8 + o

ot 5 w1 #WQ
hE + Bl + (N + ) o’
o S 2( I B wE — (€ + B0 aw D
d do d
Trot—def = (Jlad_f Al (JQC = Jlg) E = J2&d_§) W3

= e e
Tdef = 2 (dt) = 2 (dt s 2 dt .
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In the “two-polar” case, when J4B = J§48,
J 9o Do) 2 N db
i = Sl tove e S el b e

(e (8 ()
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Legendre transformation in the "polar” case:

do
Po = (J1+ J2) T (J1€ — Jo¢) ws,

d d
pg=J1<d§+OM3> pe = Jo (d—g—aw:&),
s1 = (J10? + JoG?) w1 — a (Ji€ + JoC) wy,

s2 = —a (Ji€ + o) wy + (J16? + J20®) wy,
e (J1 . B Jgjf) 0% (= B0+ (1 (i + B) @ + D) wy

In the "two-polar" case:

d\ du do
i = J— = J (D5 - 2.
— = (A + p?) o 2,

df
= Ju’x1, S2=JNxa, s3=2JA\u—

2 2
dt+J()\ —f—,lL)Xg.
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Kinetic energy in the "polar" case:

Ji(€s1 + ase)’ + Jao(asy +Cs2)° (€201 + ¢Pa) pa’

T i
2(a2 — €0)° 1 Js 2+ Q)N
(oﬂJl = (a2 - (€ 4 C)Q) Jg) pe® + ((a2 -+ (£ 4 4)2) J1+ a2J2> pe
+
2(6+¢)° s
(J1+ J2) (s3 (53 — 2ap¢) + 2ape (s3 — ape)) -
206+ Q)° T
2(§J1 — CJ2) pa (ap; — ape + s3)
2(&+¢)° 1 s
Kinetic energy in the "two-polar" case:
1 1 A2+ 2 1
e 2 2
2T T 2P T T e e N L TR
e A+ pteriiy 2Mp

ST (02 — 2\ B S e AP
25
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Poisson brackets:

%:{qiaH}v %Z{%H}a %:{pi,f[}-
ok ——1{g £l AL arhite kb f] 0 0
(. F@)} = (.9} 5

{05 pi) = 0% 15,5 — —eursh, 1D or =0, Jolie1)
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The "two-polar" equations of motion:

A\ _py o dp_pu d) _ (N p)pe My
d  J dt J dt g2—u2)? T2+ )Y

dsi  A(2X%pg+ A (u? —3X%) s3) sy dsy A (2uPps+ A (A — 3u?) s3) 51

e JCE T =i J (3 — puA?)? ’
dsy = (,UQ = )\2) 5152 dpu =0
0 =l =i
o= K4 (/\2 + 3u )p T 5 (3)\2u S ,u3) PeS3 A ()\2 = 3,u2) s3
dt J()2 )3 J>\3 J(A2 — p2)3 J(A2 — u2)3 A
dpu p_ (3)\2u + ,u2 o - 2 (3Au2 + )\3) Pes3 (3/M2 + u?’) s3
dt J(N? ) Ju3 o= o2 A

The resulting equations are terribly complicated. But there are stationary ellipses as

solutions on which the Green deformation tensor and angular velocities are constant.
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We have shown this for the potentials:

where

T =

V="k(\+p)/2

To— DGO — g R

A+ p), Pea 1

28
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Quantization ideas

Applications:

e internal degrees of freedom of molecules
e microobjects with almost “flat” core

e “Schwungrad” model used in molecular dynamics in the pioneering days of quan-

tum theory

e convolution of “classical” and “quantum” in nanophysics

29



The quantum operator of the internal kinetic energy has the form proportional to the

Laplace-Beltrami operator:

e N
D

and I',,(Q) is given by the underlying classical kinetic energy:

= dQ" dQ”
Limt = 2F Q)= o
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Laplace-Beltrami operator is given by:

=2 7 ﬁ Q" (f Wﬁ@”)

where

[T = [det [T ]|

More geometrically:

AT =T"V,V, T,

31



The Hilbert space is L?(Qiut, ), where v is the induced I'-Riemannian measure,

Q) = VEOdO:  de°.

The scalar product is given by:

(v, ®) = / T(Q)P(Q)dn(Q).
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To calculate anything in detail is difficult, but one can replace the spin variables s, by

the quantum operators S, generating right rotations of V:

FVU+)) = f(V) +ERf(V) = (V) + 5 €8 (V) + hafe)

where R; are generators and

E=| —e3 0 €1

and @ — 0 when ¢ — 0. Quantum spin operators S; satisfy the quantum Poisson

brackets:

1
5T Scu Sh| =43 a cSc-
i [Se Sl = —€a
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The classical quantity py will be replaced by the operator:

ho
D0 =550
It is possible to show that the operator Ty = —%A may be expressed as:
S 2 S 2 )\2 i 2 /\2 = 2 2\
e 12+ 22+ H 232Jr 2t 2p92— H
2Jpt - 2JA% 0 2T (N — p?) 2J (A2 = pi?) J (A2 = p?)
hs =0 B =)
— = e b
Zeaalt SO O —O =01
where the weight factor P is given by
P:Au’)\2—u2‘.

34
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The kinetic energy operator becomes:

S,? Sy A+ 2 9 A2+
Ty = D) ol D) 283

TR 202 P ) 27 (N2 — 122)
Geoe hionb0 s h 0 S dlniBo
V0 e 2 BN 1O Edns ) O dt

2p92 - 2p083

J (A

The total operator of the kinetic energy is obviously given by:

T = Ttr =k Tinta

where the translational part is given as usual by:

h? IR h? 0>
T I' == et A r == e Z] . . il it S - o . .
! om " 2m g oxt OxJ 2m : ox'?
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The total volume element in Q) = Qi X Qi is given by:

AUyl VN, oY= dsr dDEVE A i DE0

When the body is isotropic J4Z = In48 and the potential depends only on invariants
A, i1, then the solving procedure of Schrédinger equation may be partially algebraized.
Namely, one can perform the Fourier analysis on SO(3,R), SO(2,R).
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Parametrizing:

V(k) = exp (k°E,), (E,)’ e = —e40
on SO(3,R), and

= k a
SU(2) 5 u(k) = exp (k%) = cos 5 I — %sing o

we find the j-th irreducible representation of G = SU(2) x SO(3,R) is given by:

(k) = exp <%I<:S~7> :

where S/, are the Wigner matrices of the angular momentum with the Casimir quan-
tum number j and the square of magnitudes #%j (5 + 1)). In any case, ®/ are unitary
(2 =G @R airiees:
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We introduce the operators:

A — fE T eR B ole)
fF(VEV(E) = f(V(k)+Lif (V(E))+oa(e).

They are formally self-adjoint and:

e @k—bi—{—léf cpp 9
= = RN BRI L i )
k k& ko k\ kokb 9 1 )

— Cootoe— 41— = cot Lt S e pi
R 2C0t28ka+< Dm 2>kk6kb 0 A B

38



Using the operator:

we have:

Re =

DL = = R
ik Il
Do et - ckaC _Da
poE 2 0
e
R, Sca = Dc _Da'
2ok 2t 2
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The Casimir invariants have the form:

L£2=R? = £12+£22+£32:R12+R22+R32:

0? k 0 1
= (— —l—cot——) + ——D
2

4 sin

where

are respectively operators of the internal angular momentum (spin) in the laboratory

representation and in the system of axes connected with the moving top.
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Obviously

1
%[6a:6b] . 6ab0667

1

Sa,S :_acc-
i [Sa Sl ab D

62

D (6. =82=) (S.)*
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It is clear that:

Sl = 80

S, 0 = ©/97,,

&’/ = §*0’ = m%(j + 1),
G — s
B0 = s

Let us make the afore-mentioned Weyl-Peter expansion:

Tty el = O ) B (10

. 1
]7m7m 7k
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In the compact matrix form:

U(V; A, 1;0) = ZTr (F5(N p) DI(V)) e

The action of the operator &, and S, on W is algebraically represented in such a

way that the reduced amplitudes fj’k

m/,m

interpreted with the fixed values of j,k as

(25 + 1) x (2§ + 1) matrices with indices m’, m are transformed as follows:

fj,k s Sjafj’k,
fj,k = fj’kSaj.

And py acts on V:
5 Rk I,
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If we use the isotropic internal Hamiltonian:
15E— B V0 1)
the stationary Schrodinger equation:
HVY = EV

becomes reduced to the system of independent equations for the matrix amplitudes

PO
HJ}kaEk — Ejlkifjkk7
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where

o SR e B o,
Hik gk — 1 ik 2 rik 7 £k
i 2520 Tl g (A2 — MQ)QS?’ /
A2 4 2 . 2 g
- T peg2pik B S8 hkfik 2)
2J (A% = p?) J (A2 = p?)
Pl Gl o PAL o0 .
Tt e el a ks wew ok s V FIk
27 P X <Paxf ) 27 P Op (Pﬁuf >+ 8

We obtain, the family of reduced Schrédinger equations for the system of matrix-valued

amplitudes f7*(\, p). These amplitudes are dependent on deformation invariants.

In this way the number of degrees of freedom of internal motion of our model is
effectively reduced from six to two. The price we pay is that we obtain the system of
Schrodinger equations for multicomponent complex amplitudes, however, depending

only on two variables.
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This reduction is possible only for models with high symmetries, when both the inertial

tensor and the potential energy are isotropic.

=l

L — §(>\Q+/L2),

1 2 1 2
<))
V. (e

v = v+ 2,
p
where:
i
e E(AJr,u):pcose,
1 :
= E(A—u):psms.
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Comments:

In non-degenerate three-dimensional models it appeared in a natural way by taking
instead of GL(3,R) its covering group GL(3,R). In the two-polar decomposition the
orthogonal group SO(3,R) had to be replaced by the universal covering group SU(2).
The same may be done here. Namely, the SO(3, R)-factor of the decomposition must
be replaced by SU(2). And the resulting wave functions must satisfy a condition that
they combine expressions D7 /(u)e*? in such a way that either both j and k in the

admissible superposition are integers, or both of them are half-integers.
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Thank you !




