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Abstract
We study transverse Killing vector, forms on foliations and
prove some vanishing theorem for foliations.
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Foliation

Definition

A codimension q foliation F on M is given by an open cover
(Uj), submersion fj : Uj → N over a q-dimensional transverse
manifold N and, for Ui ∩Uj 6= ∅, a diffeomorphism
γij : fi(Ui ∩Uj) ⊂ N→ fj(Ui ∩Uj) ⊂ N satisfying

fj(x) = γij ◦ fi(x) x ∈ Ui ∩Uj.

We say that {Uj, fj,N,γij} is a foliated cocycle defining F.

Roughly speaking, a foliation corresponds to a decomposition
of a manifold into a union of connected submanifolds, which
are called leaves .
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Examples

(1) M = R2 − {0} and Lr = {(x,y)|x2 + y2 = r2}. Then F = {Lf}.

(2) M = R2 and La = {(x,y)|y = x2 + a}.

(3) M = R2 and La = {(x,y)|y = ln| sec x|+ a} together with the
vertical lines cos x = 0. Equivalently, the solution of dydx = tan x is a
foliation La.
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(4) Let M = D2 × S1 (D2 = {(x,y)|x2 + y2 6 1}) and for 0 6 a < 1,

La = {(x, ei2π(a+f(|x|)))|x ∈ Int(D2)},

∂(D2 × S1) = S1 × S1 = T2.

Then F ≡ {La, T2} is a codimension 1 foliation of D2 × S1. In this
case, La is diffeomorphic to R2 and T2 is the only compact leaf.
This is called a Reeb foliation of the solid torus D2 × S1.
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(5) Let S3 = {(z,w) ∈ C2||z|2 + |w|2 = 1}. Let two solid torus be

S3+ = {(z,w) ∈ S3||z|2 > 1

2
} ∼= D2 × S1,

S3− = {(z,w) ∈ S3||z|2 6 1

2
} ∼= D2 × S1.

Then S3 = S3+ ∪ S3− ∼= (D2 × S1) ∪ (D2 × S1) by pasting the
boundaries ∂(D2 × S1). And S3+ ∩ S3− = T2. A foliation on S3 is
obtained from Reeb foliations {La} in (9) and one compact leaf
T2.

(6) (Submersion) A smooth submersion f :M→ B is a map of
manifolds with a surjective derivative map at every point of M.

(7) An ordinary manifold can be considered as a foliated manifold
with the point foliation.
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Known facts

A nowhere zero differential 1-form ω defines a codimension
one foliation on M if L is integrable, where Lx = Kerωx, i.e.
ω∧ dω = 0 (integrable condition). (For example, Level
hypersurfaces)

Any compact manifold M admits a one dimensional foliation
if and only if the Euler characteristic χ(M) = 0.

Every closed manifold M with χ(M) = 0 admits a
codimension one foliation (Thurston,1974).
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Leaf space

Define x ∼ y in M ⇐⇒ x and y are in the same leaf.

Then M/F :=M/ ∼, endowed with the quotient topology.
This is called as the leaf space of F.

Generally, M/F is not a manifold. But we can define on M/F
many geometrical objects like functions, diffenential forms,
differential operators etc. They correspond to their analogues
on M invariant along the leaves.

The tangential geometry is infinitesimally modeled by the
leaves. And the transversal geometry is infinitesimally
modeled by the leaf space, which plays a central role in the
current research.

Seoung Dal Jung Transverse conformal Killing forms on foliated manifolds



Riemannian foliation

Let TF be the tangent bundle of F and Q = TM/TF the
normal bundle of F. Then we have the exact sequence of
vector bundles

0→ TF → TM
π→ Q→ 0. (1)

F is a Riemannian foliation if there exists a metric gQ on Q

satisfying
◦
∇XgQ = 0 for any X ∈ TF. where

◦
∇ is the partial

Bott connection in Q.

The property F is Riemannian means that the leaf space M/F
is a Riemannian manifold even if M/F does not support any
diffenentiable structure.
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Bundle-like metric

Let (M,gM,F) be a Riemannian manifold with a foliation F

of codimension q and a Riemannian metric gM.

gM is a bundle-like metric ⇐⇒ All geodesics orthogonal to
a leaf at one point are orthogonal to each leaf at every point.

A Riemannian foliation admits a bundle-like metric.

Let M be a foliated manifold and complete in a bundle-like
metric. Let F be a codimension 1-foliation. If one leaf is
compact, then every leaf is compact.

Not all foliations have bundle-like metrics.
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Transversal vector fields

A vector field Y on M is an transversal infinitesimal
automorphism if its flow preserves the leaves. That is,
[Y,Z] ∈ TF for all Z ∈ TF.

An infinitesimal automorphism Y is called a transversal
Killing field (or transversal conformal field) if Y satisfies
θ(Y)gQ = 0 (or θ(Y)gQ = 2fYgQ for a basic function fY
depending on Y).

A transversal Killing (or conformal ) field Y preserves the
transverse metric, i.e., transversally isometric (or the
conformal class of the transverse metric).
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Basic forms

A differential form ω ∈ Ωr(M) is basic, if

i(X)ω = 0, θ(X)ω = 0 ∀X ∈ ΓL.

Let Ω∗B(F) be the space of all basic forms on M. Then
d : ΩrB → Ωr+1

B and d2 = 0. So the basic cohomology is
given by

HrB(F) = H(ΩB(F),dB), dB = d|ΩB .

H1
B(F)→ H1

DR(M) : injective (Tondeur, 1977).

The basic cohomology plays the role of the De Rham
cohomology of the leaf space of the foliation.
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Basic Laplacian

Let δB the formal adjoint of dB = d|ΩB . Generally, δB 6= δ|ΩB ,
but for any φ ∈ Ω1

B, δBφ = δφ.

The basic Laplacian is given by ∆B = dBδB + δBdB.

(El Kacimi-Hector-Sergiescu, 1985) Let M be a closed
manifold. Then

ΩrB(F)
∼= HrB ⊕ imdB ⊕ imδB,

with finite dimensional HrB = {φ ∈ ΩrB|∆Bφ = 0}.

(Kamber-Tondeur, 1997) HrB(F)
∼= HrB.
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Transverse conformal Killing forms

A basic r-form φ is said to be a transverse conformal
Killing form if

∇Xφ =
1

r+ 1
i(X)dBφ−

1

q− r+ 1
X∗ ∧ δTφ (2)

for any X ∈ TF⊥, where δT = δB − i(κ]).

A basic r-form φ is a transverse Killing form if

∇Xφ =
1

r+ 1
i(X)dBφ (3)

for any X ∈ TF⊥.
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Remarks

Note that a transverse conformal Killing 1-form (or Killing
1-form) is a dual form of a transversal conformal (or Killing)
vector field.

Also, on a transverse spin foliation, transverse conformal
Killing forms (or Killing forms) are related to transversal
twistor spinors, i.e., ∇Xψ = − 1

qX ·Dbψ (or Killing spinors,
i.e., ∇Xψ = µX ·ψ). Here Db is a basic Dirac operator on
(M,F).
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The curvature operator

Let F be the curvature endomorphism, which is defined by

F(φ) =

q∑
a,b=1

θa ∧ i(Eb)R
Q(Eb,Ea)φ, (4)

where RQ is the curvature tensor on ΩrB(F) induced by the
connection on Q.

For any basic 1-form φ, F(φ)] = RicQ(φ]).

The operator AY is defined by

AYφ = θ(Y)φ−∇Yφ. (5)
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Generalized Weitzenbock formula

The generalized Weitzenböck formula is given by

∆Bφ = ∇∗tr∇trφ+ F(φ) +Aκ]φ, (6)

where ∇∗tr∇tr = −
∑q
a=1∇2

Ea,Ea
+∇κ] and κ is the mean

curvature form of F.

Assume that F is positive definite. Then

HrB(F) = 0.

Assume that the transversal Ricci curvature RicQ is positive
definite. Then H1

B(F) = 0.
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Formulas

Let φ be a transverse conformal Killing r-form. Then

F(φ) =
r

r+ 1
δTdBφ+

r∗

r∗ + 1
dBδTφ, (7)

where r∗ = q− r.

If φ is a transverse Killing r-form, then

F(φ) =
r

r+ 1
δTdBφ, (8)

or

∆Bφ =
r+ 1

r
F(φ) + θ(κ])φ. (9)
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Vanishing theorems

Theorem(Jung-Richardson, 2012)

Let (M,gM,F) be a closed, connected Riemannian manifold.
(i) Assume that F 6 0. Then any transverse conformal Killing r
(1 6 r 6 q− 1)-forms are parallel.
(ii) In addition, if F < 0 at some point, then there are no transverse
conformal Killing r-forms on M.

Corollary. Assume the transversal Ricci curvature RicQ is negative
definite. Then there are no transversal conformal fields (of course,
Killing fields) on M.
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Kahler foliation

Kähler foliation F satisfies the following three conditions;
(i) F is Riemannian,
(ii) there is an almost complex structure J : Q→ Q such that

gQ(JX, JY) = gQ(X, Y) ∀X, Y ∈ Q. (10)

(iii) ∇J = 0.

Examples. (1) Sasakian manifold (M2n+1,g) is a Kähler
foliation with one dimensional foliation generated by the
structure vector.
(2) The generalized Hopf-fiberation S2n+1 → CPn is an
example of a Kähler foliation with constant (transversal)
holomorphic sectional curvature.
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Kähler form

Note that
Ω(X, Y) = gQ(X, JY) (11)

defines a basic Kähler 2-form Ω, which is closed as a
consequence of ∇gQ = 0 and ∇J = 0.

Then Ω is given by

Ω =

n∑
k=1

θ2k−1 ∧ θ2k = −
1

2

2n∑
k=1

θk ∧ Jθk, (12)

where θa is a gQ-dual 1-form to Ea on M.
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Operators on Kähler foliation

Let L : ΩrB → Ωr+2
B and Λ : ΩrB → Ωr−2

B be given by

L(φ) = Ω∧ φ, Λ(φ) = −
1

2

2m∑
a=1

i(JEa)i(Ea)φ. (13)

Let J : ΩrB → ΩrB and S : ΩrB → ΩrB be

J(φ) =

2m∑
a=1

Jθa ∧ i(Ea)φ, (14)

S(φ) =

2m∑
a=1

Jθa ∧ i(RicQ(Ea))φ. (15)

[J,L] = [J,Λ] = [F, J] = [F,Λ] = [S, J] = [S,Λ] = [S,L] = 0.

Seoung Dal Jung Transverse conformal Killing forms on foliated manifolds



Lemmas on Kähler foliations (Jung, 2015)

On a Kähler foliation (F, J), a transverse conformal Killing
form φ satisfies

(q+ r2 − qr)S(φ) = F(Jφ), (16)

(q+ r2 − qr)S(φ) = (1 − r)F(Jφ). (17)

On a Kähler foliation (F, J), if φ is a transverse conformal
Killing form, then

F(Jφ) = 0 (18)
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Vanishing theorem (Killing forms)

If κ] is transversally holomorphic, i.e., θ(κ)J = 0, then

[∆B,Λ] = [Aκ] ,Λ] = δT i(Jκ
]) + i(Jκ])δT .

Theorem (Jung-Jung, 2012)

Let (F, J) be a Kähler foliation in a compact Riemannian manifold
M. Assume that κ] is transversally holomorphic. Then any
transverse Killing r-form (2 6 r 6 q) is parallel.

Note that on a Kähler foliation, we prove vanishing theorem
without the conditions of the transversal Ricci curvature.

Open when r = 1.
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Vanishing theorem (Conformal forms)

Theorem (Jung, 2015)

Let (F, J) be a Kähler foliation with a codimension q = 2m in a
closed, connected Riemanian manifold M. Let φ be a transverse
conformal Killing q

2 -form. Then
(i) If q 6= 4, then Jφ is parallel.
(ii) If q = 4 and F is minimal, then Jφ is parallel.

Proof. (i) If q 6= 4 or m 6= 2, then

∆BJφ = θ(κ)Jφ.

So by the generalized Weitzenbock formula,

1

2
(∆B − κ)|Jφ|2 = −|∇trJφ|2 6 0.

By the generalized maximum principle, it is proved.
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(ii) If q = 4, then

∆BJφ = −2δBi(κ)Lφ+ di(κ)Jφ.

Hence if F is minimal, then by the generalized Weitzenbock
formula,

∇∗tr∇trJφ = 0.

The proof is completed. �
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Vanishing theorem (Conformal forms)

Theorem (Jung, 2015)

Let (F, J) be a minimal Kähler foliation on a compact manifold.
Then for a transverse conformal Killing r (2 6 r 6 q− 2)-form φ,
Jφ is parallel.

Proof. First, note that F(JΛφ) = ΛF(Jφ) = 0. Since F is minimal,
∆B(JΛφ) = 0. By the generalized Weitzenbock formula,

∇∗tr∇trJΛφ = 0,

which means that JΛφ is parallel. Similarly, JLφ is parallel. Note
that (m− r)Jφ = [Λ,L]Jφ and [∇,L] = [∇,Λ] = 0. Hence if r 6= m,
then Jφ is parallel. For r = m, see before Theorem. �
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Relations between vector fields

Riemannian manifold

- Conformal field ⇐= Killing field

- Conformal field and d(divY) = 0 =⇒ Killing field

Riemannian foliation

- Transversal conformal field ⇐= Transversal Killing field

- Transversal conformal field and dB(div∇Ȳ) = 0;∫
< AY Ȳ +AtY Ȳ,κ >> 0 =⇒ Transversal Killing field
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Relations between vector fields

Kähler manifiold

- Conformal field ⇐⇒ Killing field

Kähler foliation

- Transversal Killing field =⇒ Transversal conformal field

- Transversal conformal field and σ∇ 6= 0; constant =⇒
Transversal Killing field.
Here σ∇ is the transversal scalr curvature of F.
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Vanishing results (Vector fields)

Riemannian manifold

- If Ric 6 0 and Ric < 0 at some point, then @ Killing vector
and conformal vector.

Riemannian foliation

- If RicQ 6 0 and RicQ < 0 at some point, then @ transversal
Killing field.

- If RicQ 6 0 and Ric < 0 at some point and δBκ = 0, then @
transversal conformal field.
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General forms on Riemannian case

Riemannian manifold

- If F 6 0, then every Killing (conformal) r-forms are parallel.
- In addition, if F < 0, then @ Killing (conformal) r-forms.

Riemannian foliation (Jung-Richardson, 2012)

- The results are same in case of transverse Killing forms.
- If F 6 0 and δBκ = 0, then transverse conformal r-forms are
parallel.
- In addition, if F < 0 at some point, then @ transverse
conformal r-forms.
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General forms on Kähler case

Kähler manifold
- Any Killing r (2 6 r 6 2m)-forms are parallel.
- For any conformal r (2 6 r 6 2m− 2)-form φ, JΛφ is
parallel. If r 6= m, then Jφ is parallel (Moroianu-Semmelmann,
2003).

Kähler foliation
- Any transverse Killing r (2 6 r 6 q)-forms are parallel
(Jung-Jung, 2012).
- For any transverse conformal Killing r (2 6 r 6 q− 2)-form,
if F is minimal, then Jφ is parallel. (Jung, 2015)

- Open when F is not minimal !!!
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