Extended harmonic mappings and Euler-Lagrange equations

Keiichi Kikuchi (Tokai University)

Let $\phi:(M,g)\to(N,h)$ be a smooth mapping, where (M,g) and (N,h) are Riemannian manifolds of dimension 2 and 3 with Riemannian metric \mathcal{S} and h, respectively. Then we consider the following Lagrangian (density):

$$L_{\phi} = \frac{1}{2} \sum_{i,j=1}^{2} \sum_{\alpha,\beta=1}^{3} g^{ij} \partial_{i} \phi^{\alpha} \partial_{j} \phi^{\beta} h_{\alpha\beta}(\phi) - G(\phi), \tag{1}$$

where $\phi^{\alpha} := y^{\alpha} \circ \phi$, $\alpha = 1,2,3$. $(x^1,x^2), (y^1,y^2,y^3)$ are local coordinates systems on M,N. $\partial_1 \phi^{\alpha}$, $\partial_2 \phi^{\alpha}$ denote the partial derivatives $\frac{\partial}{\partial x^1} \phi^{\alpha}$, $\frac{\partial}{\partial x^2} \phi^{\alpha}$, respectively.

$$h(\phi) = \sum_{\alpha,\beta=1}^{3} h_{\alpha\beta}(\phi)(dy^{\alpha})_{\phi} \otimes (dy^{\beta})_{\phi}, \quad G(\phi) = G \circ \phi \quad (G \in C^{\infty}(N)).$$

The generalized momenta p_{α}^{i} can be defined by

$$p_{\alpha}^{i} := \frac{\partial L_{\phi}}{\partial (\partial_{i} \phi^{\alpha})}, \quad i = 1, 2, \alpha = 1, 2, 3,$$

where $\partial_i \phi^{\alpha}$ can be regarded as the components of tensor field [N]:

$$(d\phi)((t,x)) = \sum_{i=1}^{2} \sum_{\alpha=1}^{3} \partial_{i} \phi^{\alpha} (dx^{i})_{(t,x)} \otimes (\frac{\partial}{\partial y^{\alpha}})_{\phi((t,x))}, \quad x^{1} = t, \ x^{2} = x.$$

Then we have the transformation formulas of $\partial_i \phi^{\alpha}$ and p_{α}^i :

$$\widetilde{\partial}_{j}\widetilde{\phi}^{\alpha} = \sum_{i=1}^{2} \sum_{\beta=1}^{3} \frac{\partial x^{i}}{\partial \widetilde{x}^{j}} (\frac{\partial \widetilde{y}^{\alpha}}{\partial y^{\beta}}(\phi)) \partial_{i}\phi^{\beta}, \qquad \widetilde{p}_{\alpha}^{i} = \sum_{j=1}^{2} \sum_{\beta=1}^{3} \frac{\partial \widetilde{x}^{i}}{\partial x^{j}} (\frac{\partial y^{\beta}}{\partial \widetilde{y}^{\alpha}}(\phi)) p_{\beta}^{j},$$

under the transformation of coordinates : $(x^1, x^2) \to (\widetilde{x}^1, \widetilde{x}^2)$ and $(y^1, y^2, y^3) \to (\widetilde{y}^1, \widetilde{y}^2, \widetilde{y}^3)$. Hence p_{α}^i can be regarded as the components of tensor field: $p((t, x)) = \sum_{i=1}^2 \sum_{\alpha=1}^3 p_{\alpha}^i (\frac{\partial}{\partial x^i})_{(t, x)} \otimes (dy^{\alpha})_{\phi((t, x))}$

Proposition 1. Assume that (M,g) is (R^2,g_0) , where g_0 is the standard metric on R^2 . Then, under the Lagrangian (1) of ϕ , the following (a) and (b)

are equivalent:

(a) (Euler-Lagrange equations)

$$\sum_{i=1}^{2} \partial_{i} p_{\alpha}^{i} - \frac{\partial L_{\phi}}{\partial \phi^{\alpha}} = 0, \quad \alpha = 1, 2, 3.$$
 (2)

(b)
$$\tau_{\phi} = -\operatorname{grad}_{h} G(\phi), \tag{3}$$

where au_{ϕ} stands for the tension field of ϕ and

$$grad_{h}G(\phi) = \sum_{\alpha,\beta=1}^{3} h^{\alpha\beta}(\phi)((\frac{\partial}{\partial y^{\alpha}})_{\phi}G(\phi))(\frac{\partial}{\partial y^{\beta}})_{\phi}.$$

Proof.
$$\sum_{i=1}^{2} \partial_{i} p_{\gamma}^{i} = \sum_{i=1}^{2} \sum_{\alpha=1}^{3} \partial_{i} (\partial_{i} \phi^{\alpha} h_{\alpha \gamma}(\phi))$$

$$=\sum_{i=1}^{2}\sum_{\alpha=1}^{3}\partial_{i}^{2}\phi^{\alpha}h_{\alpha\gamma}(\phi)+\sum_{i=1}^{2}\sum_{\alpha,\beta=1}^{3}\partial_{i}\phi^{\alpha}\frac{\partial h_{\alpha\gamma}(\phi)}{\partial\phi^{\beta}}\partial_{i}\phi^{\beta},$$
 and
$$\frac{\partial L_{\phi}}{\partial\phi^{\gamma}}=\frac{1}{2}\sum_{i=1}^{2}\sum_{\alpha,\beta=1}^{3}\partial_{i}\phi^{\alpha}\partial_{i}\phi^{\beta}\frac{\partial h_{\alpha\beta}(\phi)}{\partial\phi^{\gamma}}-\frac{\partial G(\phi)}{\partial\phi^{\gamma}}.$$

Then we have

$$\begin{split} &\sum_{i=1}^{2} \partial_{i} \, p_{\gamma}^{i} - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}} \\ &= \sum_{i=1}^{2} \sum_{\alpha=1}^{3} \partial_{i}^{2} \phi^{\alpha} h_{\alpha \gamma}(\phi) + \sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{3} (\frac{\partial h_{\alpha \gamma}(\phi)}{\partial \phi^{\beta}} - \frac{1}{2} \frac{\partial h_{\alpha \beta}(\phi)}{\partial \phi^{\gamma}}) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta} + \frac{\partial G(\phi)}{\partial \phi^{\gamma}}. \end{split}$$

On the other hand, we have

$$\sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{3} \Gamma^{\mu}_{\alpha\beta}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta} = \sum_{i=1}^{2} \sum_{\alpha,\beta,\gamma=1}^{3} h^{\mu\gamma}(\phi) (\frac{\partial h_{\alpha\gamma}(\phi)}{\partial \phi^{\beta}} - \frac{1}{2} \frac{\partial h_{\alpha\beta}(\phi)}{\partial \phi^{\gamma}}) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta},$$

where $\Gamma^{\mu}_{\alpha\beta}$ denotes the coefficients of Levi-Civita connection of (N,h).

Then we have

$$\sum_{\gamma=1}^{3} (\sum_{i=1}^{2} \partial_{i} p_{\gamma}^{i} - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}}) h^{\mu \gamma}(\phi) = \sum_{i=1}^{2} \partial_{i}^{2} \phi^{\mu} + \sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{3} \Gamma_{\alpha\beta}^{\mu}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta} + \sum_{\gamma=1}^{3} h^{\gamma \mu}(\phi) \frac{\partial G(\phi)}{\partial \phi^{\gamma}}.$$

Since
$$\tau_{\phi} = \sum_{\mu=1}^{3} \sum_{i=1}^{2} \left(\sum_{i=1}^{2} \partial_{i}^{2} \phi^{\mu} + \sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{3} \Gamma_{\alpha\beta}^{\mu}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta}\right) \left(\frac{\partial}{\partial y^{\mu}}\right)_{\phi},$$
 and
$$\operatorname{grad}_{h} G(\phi) = \sum_{\gamma,\mu=1}^{3} h^{\gamma\mu}(\phi) \frac{\partial G(\phi)}{\partial \phi^{\gamma}} \left(\frac{\partial}{\partial y^{\mu}}\right)_{\phi},$$

we obtain

Extended harmonic mapping

$$\tau_{\phi} + grad_{h}G(\phi) = \sum_{\mu, \gamma=1}^{3} (\sum_{i=1}^{2} \partial_{i} p_{\gamma}^{i} - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}}) h^{\mu\gamma}(\phi) (\frac{\partial}{\partial y^{\mu}})_{\phi}.$$

This formula proves Prop. 1.

In this paper, if the tension field of ϕ is given by the formula (b) in Prop.1 for some $G \in C^{\infty}(N)$, ϕ is called an extended harmonic mapping and $G(\phi)$ is called the potential function associated with ϕ .

When we give an extended harmonic mapping ϕ such that the associated potential function is $G(\phi)$, we always consider the Lagrangian (1) and the corresponding Euler-Lagrange equations (a), throughout the paper.

 ϕ is called an extended harmonic immersion if ϕ is an extended harmonic mapping and an immersion.

Extended harmonic mapping

Let $\phi: (R^2, g_0) \to (H^3(-1), h)$ be an extended harmonic mapping with the associated potential function $G(\phi)$, where \mathcal{G}_0 and h stand for the standard metric on \mathbb{R}^2 and the Riemannian metric on the hyperbolic 3-space $H^{3}(-1)$ of constant curvature -1, respectively, and h can be given by $\sum_{\alpha,\beta=1}^{\tilde{\Sigma}} h_{\alpha\beta} d y^{\alpha} \otimes d y^{\beta}$

$$= (d y^{1}) \otimes (d y^{1}) + \cosh^{2} y^{1} (d y^{2}) \otimes (d y^{2}) + \cosh^{2} y^{1} \cosh^{2} y^{2} (d y^{3}) \otimes (d y^{3}),$$

where (y^1, y^2, y^3) is a local coordinate system on $H^3(-1)$.

By making use of Euler-Lagrange equations (2), we have
 (a)
$$\partial_1 p_1^1 + \partial_2 p_1^2 = \frac{\partial L_{\phi}}{\partial \phi^1}$$
, (b) $\partial_1 p_2^1 + \partial_2 p_2^2 = \frac{\partial L_{\phi}}{\partial \phi^2}$,

(c)
$$\partial_1 p_3^1 + \partial_2 p_3^2 = \frac{\partial L_{\phi}}{\partial \phi^3}$$
.

Associated potential function

The formula (a) implies

(d)
$$\frac{\partial G(\phi)}{\partial \theta} = -\Delta \theta + \frac{1}{2} < \nabla \varphi, \nabla \varphi > \sinh 2\theta + \frac{1}{2} < \nabla \psi, \nabla \psi > \sinh 2\theta \cosh^2 \varphi,$$

and also, from the formula (b) and (c), we have

(e)
$$\frac{\partial G(\phi)}{\partial \varphi} = -\cosh^2 \theta \, \Delta \varphi + \frac{1}{2} \langle \nabla \psi, \nabla \psi \rangle \cosh^2 \theta \, \sinh 2\varphi - \langle \nabla \theta, \nabla \varphi \rangle \sinh 2\theta,$$

$$(f) \quad \frac{\partial G(\phi)}{\partial \psi} = -\cosh^2 \theta \cosh^2 \phi \, \Delta \psi - \langle \nabla \theta, \nabla \psi \rangle \sinh 2\theta \cosh^2 \phi$$

$$-<\nabla\varphi,\nabla\psi>\sinh 2\varphi\cosh^2\theta,$$

where $\theta = \phi^1 = y^1 \circ \phi$, $\varphi = \phi^2 = y^2 \circ \phi$, $\psi = \phi^3 = y^3 \circ \phi$, and (d),(e) and (f) are obtained by using the following Lagrangian:

$$L_{\phi} = \frac{1}{2} \{\theta_t^2 + \theta_x^2 + (\varphi_t^2 + \varphi_x^2) \cosh^2 \theta + (\psi_t^2 + \psi_x^2) \cosh^2 \theta \cosh^2 \varphi\} - G(\phi).$$
(4

Determination of tension field

The tension field τ_{ϕ} of ϕ is given by

$$\tau_{\phi} = -h^{11}(\phi) \frac{\partial G(\phi)}{\partial \theta} \frac{\partial}{\partial \theta} - h^{22}(\phi) \frac{\partial G(\phi)}{\partial \varphi} \frac{\partial}{\partial \varphi} - h^{33}(\phi) \frac{\partial G(\phi)}{\partial \psi} \frac{\partial}{\partial \psi},$$

where the right hand side formula does not depend on the way to choose a local coordinate system on $H^3(-1)$, and

$$h^{11}(\phi) = 1$$
, $h^{22}(\phi) = \frac{1}{\cosh^2 \theta}$, $h^{33}(\phi) = \frac{1}{\cosh^2 \theta \cosh^2 \varphi}$,

and also $\frac{\partial G(\phi)}{\partial \theta}$, $\frac{\partial G(\phi)}{\partial \varphi}$ and $\frac{\partial G(\phi)}{\partial \psi}$ are given by the formulas (d),(e) and (f).

Assume that θ, φ, ψ are cyclic coordinates, i.e., $\frac{\partial L_{\phi}}{\partial \theta} = \frac{\partial L_{\phi}}{\partial \varphi} = \frac{\partial L_{\phi}}{\partial \psi} = 0.$

we have
$$\tau_{\phi} = -(<\nabla \varphi, \nabla \varphi > + <\nabla \psi, \nabla \psi > \cosh^2 \varphi) \sinh \theta \cosh \theta \frac{\partial}{\partial \theta}$$

$$-\langle \nabla \psi, \nabla \psi \rangle \sinh \varphi \cosh \varphi \frac{\partial}{\partial \varphi}. \tag{5}$$

We consider the following conservative formula for generalized momenta:

$$dp\left((t,x)\right) = \sum_{i,j=1}^{2} \sum_{\alpha=1}^{3} \partial_{i} p_{\alpha}^{j} \left(dx^{i}\right)_{(t,x)} \otimes \left(\frac{\partial}{\partial x^{j}}\right)_{(t,x)} \otimes \left(dy^{\alpha}\right)_{\phi((t,x))} = 0, \tag{6}$$

Let $\phi: (R^2, g_0) \to (H^3(-1), h)$ be an extended harmonic mapping with associated potential function $G(\phi) = G \circ \phi$, $G \in C^{\infty}(H^3(-1))$.

Throughout the paper, we use the following notation:

$$\theta = \phi^1 = y^1 \circ \phi, \quad \varphi = \phi^2 = y^2 \circ \phi, \quad \psi = \phi^3 = y^3 \circ \phi.$$

The formula (6) implies that θ, φ, ψ are the cyclic coordinates with respect to Euler-Lagrange equations (2). Then we holds the following formula:

$$\sum_{i=1}^{2} \partial_i p_{\alpha}^i = 0, \quad \alpha = 1, 2, 3.$$

This formula may be called the strong Euler-Lagrange equations. Under the strong Euler-Lagrange equations, the tension field of ϕ is given by (5).

The conservative formula (6) for generalized momenta implies that

(i)
$$\partial_1 p_1^1 = \partial_1 p_1^2 = \partial_2 p_1^1 = \partial_2 p_1^2 = 0$$
,

(ii)
$$\partial_1 p_2^1 = \partial_2 p_2^1 = 0$$
,

(iii)
$$\partial_1 p_2^2 = \partial_2 p_2^2 = 0$$
,

(iv)
$$\partial_1 p_3^1 = \partial_2 p_3^1 = 0$$
,

(v)
$$\partial_1 p_3^2 = \partial_2 p_3^2 = 0.$$

The formula (i) implies that

$$\theta_{tt} = \theta_{tx} = \theta_{xt} = \theta_{xx} = 0,$$

from which, we can choose θ as $\theta(t,x) = t + x + c$. (c: constant) (7)

The formula (ii) and (iii) imply that

$$\partial_t(\varphi_t \cosh^2 \theta) = \partial_x(\varphi_t \cosh^2 \theta) = 0,$$

$$\partial_t (\varphi_x \cosh^2 \theta) = \partial_x (\varphi_x \cosh^2 \theta) = 0,$$

from which, we can choose φ as $\varphi_t = \varphi_x = \frac{1}{\cosh^2 \theta}$. Similarly, by using (iv) and (v),

We can choose ψ such as

$$\psi_t = \psi_x = \frac{1}{\cosh^2 \theta(t, x) \cosh^2 \varphi(t, x)}.$$

Hence, we have

$$\varphi(t,x) = \int \frac{dt}{\cosh^2 \theta(t,x)} + \int \frac{dx}{\cosh^2 \theta(t,x)},\tag{8}$$

from the formula (iv),(v), we can choose ψ as follows:

$$\psi(t,x) = \int \frac{dt}{\cosh^2 \theta(t,x) \cosh^2 \varphi(t,x)} + \int \frac{dx}{\cosh^2 \theta(t,x) \cosh^2 \varphi(t,x)}.$$
 (9)

Determination of associated potential function

The formulas (2) and (6) imply that

$$\frac{\partial L_{\phi}}{\partial \theta} = 0, \quad \frac{\partial L_{\phi}}{\partial \varphi} = 0 \quad and \quad \frac{\partial L_{\phi}}{\partial \psi} = 0,$$
 (10)

that is, θ, φ , and ψ are the cyclic coordinates.

Since θ, φ , and ψ is the cyclic coordinates and (4), we have

$$\frac{\partial G(\phi)}{\partial \theta} = \frac{1}{2} (|\nabla \varphi|^2 + |\nabla \psi|^2 \cosh^2 \varphi) \sinh 2\theta, \tag{11}$$

$$\frac{\partial G(\phi)}{\partial \varphi} = \frac{1}{2} |\nabla \psi|^2 \cosh^2 \theta \sinh 2\varphi, \tag{12}$$

$$\frac{\partial G(\phi)}{\partial \psi} = 0,\tag{13}$$

where $\nabla \varphi, \nabla \psi$ stand for the gradients of φ, ψ on (R^2, g_0) , respectively.

Determination of tension field

The formulas (8) and (9) imply that

$$|\nabla \varphi(t,x)| = \frac{\sqrt{2}}{\cosh^2 \theta(t,x)}, \qquad |\nabla \psi(t,x)| = \frac{\sqrt{2}}{\cosh^2 \theta(t,x) \cosh^2 \varphi(t,x)}, \tag{14}$$

from the formulas (11),(12),(13) and (14), we obtain

$$G(\phi) = \int \frac{2(\cosh^2 \varphi(t, x) + 1)}{\cosh^3 \theta(t, x) \cosh^2 \varphi(t, x)} \sinh \theta(t, x) d\theta$$
$$+ \int \frac{2\sinh \varphi(t, x)}{\cosh^2 \theta(t, x) \cosh^3 \varphi(t, x)} d\varphi.$$

Using (11),(12) and (13), we have the tension field au_{ϕ} of ϕ :

$$\begin{split} \tau_{\phi} &= -\frac{1}{2} (\langle \nabla \varphi, \nabla \varphi \rangle + \langle \nabla \psi, \nabla \psi \rangle \cosh^2 \varphi) \sinh 2\theta \, \frac{\partial}{\partial \theta} \\ &- \frac{1}{2} \sinh 2\varphi \langle \nabla \psi, \nabla \psi \rangle \frac{\partial}{\partial \varphi}. \end{split}$$

Extended harmonic mapping

Thus, by making use of conservative formula (6) of generalized momenta, we can construct an example of extended harmonic mapping, which is not an immersion.

Extended harmonic CMC-H immersion

Let $\phi: (R^2, g_0) \to (H^3(-1), h)$ be an extended harmonic CMC-H immersion with associated potential function $G(\phi) = G \circ \phi$.

Then, since $\tau(\phi) = -\operatorname{grad}_h G(\phi)$, we have $\|\operatorname{grad}_h G(\phi)\|_h = 2H$ and the mean curvature vector field of ϕ is given by $\frac{1}{2}\tau_{\phi}$.

H stands for the constant mean curvature of ϕ .

Under the assumption of the cyclic coordinates, (11),(12) and (13) hold, then

$$\begin{split} \operatorname{grad}_h G(\phi) &= h^{11}(\phi) \frac{\partial G(\phi)}{\partial \theta} \frac{\partial}{\partial \theta} + h^{22}(\phi) \frac{\partial G(\phi)}{\partial \varphi} \frac{\partial}{\partial \varphi} + h^{33}(\phi) \frac{\partial G(\phi)}{\partial \psi} \frac{\partial}{\partial \psi} \\ &= \frac{1}{2} (|\nabla \varphi|^2 + |\nabla \psi|^2 \cosh^2 \varphi) \sinh 2\theta \frac{\partial}{\partial \theta} + \frac{1}{2} |\nabla \psi|^2 \sinh 2\varphi \frac{\partial}{\partial \varphi}, \\ h_{11}(\phi) &= 1, \quad h_{22}(\phi) = \cosh^2 \theta, \quad h_{33}(\phi) = \cosh^2 \theta \cosh^2 \varphi, \\ h_{12}(\phi) &= h_{21}(\phi) = h_{13}(\phi) = h_{31}(\phi) = h_{23}(\phi) = h_{32}(\phi) = 0. \end{split}$$

Extended harmonic CMC-H immersion

Then, since $\|\operatorname{grad}_h G(\phi)\|_h^2 = 4H^2$, we have

$$(|\nabla \varphi|^2 + |\nabla \psi|^2 \cosh^2 \varphi)^2 \sinh^2 2\theta + |\nabla \psi|^4 \sinh^2 2\varphi \cosh^2 \theta = 16H^2.$$

Hence, we can take the parameter function $\rho = \rho(t, x)$ such that

$$(|\nabla \varphi|^2 + |\nabla \psi|^2 \cosh^2 \varphi) \sinh 2\theta = 4H \cos \rho,$$
$$|\nabla \psi|^2 \sinh 2\varphi \cosh \theta = 4H \sin \rho.$$

Then, under the assumption of cyclic coordinates, we can choose the associated potential function with respect to ϕ as follows:

$$G(\phi) = 2H(\int \cos \rho \ d\theta + \int \cosh \theta \sin \rho \ d\varphi).$$

Consequently, the potential function $G(\phi)$ contains the constant mean curvature H itself.

Let $\phi: (R^2, g_0) \to (N, h)$ (dim N = 3) be an extended harmonic mapping with the associated potential function $G(\phi)$.

We use the notations: $\phi_t^{\alpha} := \partial_t \phi^{\alpha}$, $\phi_r^{\alpha} := \partial_r \phi^{\alpha}$, $\alpha = 1,2,3$.

Then we define the Hamiltonian densities
$$H_{\phi}^{(t)}$$
 and $H_{\phi}^{(x)}$ with respect to ϕ :
$$H_{\phi}^{(t)} \coloneqq \sum_{\alpha=1}^{3} \phi_{t}^{\alpha} p_{\alpha}^{1} - L_{\phi}(\phi, d\phi), \quad H_{\phi}^{(x)} \coloneqq \sum_{\alpha=1}^{3} \phi_{x}^{\alpha} p_{\alpha}^{2} - L_{\phi}(\phi, d\phi),$$

where the Lagrangian L can be regarded as a smooth function on the 1-jet bundle $J^{1}((R^{2}, g_{0}), (N, h))$.

$$\frac{\partial}{\partial t} H_{\phi}^{(t)} = \sum_{\alpha=1}^{3} \phi_{tt}^{\alpha} p_{\alpha}^{1} + \sum_{\alpha=1}^{3} \phi_{t}^{\alpha} \partial_{1} p_{\alpha}^{1} - \sum_{\alpha=1}^{3} \frac{\partial L_{\phi}}{\partial \phi^{\alpha}} \phi_{t}^{\alpha} - \sum_{\alpha=1}^{3} \frac{\partial L_{\phi}}{\partial \phi_{t}^{\alpha}} \phi_{tt}^{\alpha} - \sum_{\alpha=1}^{3} \frac{\partial L_{\phi}}{\partial \phi_{x}^{\alpha}} \phi_{tx}^{\alpha},$$

by using Euler-Lagrange equations (2), we have

$$\frac{\partial}{\partial t}H_{\phi}^{(t)} = \sum_{\alpha=1}^{3} \left(\frac{\partial L_{\phi}}{\partial \phi^{\alpha}} - \partial_{2}p_{\alpha}^{2}\right)\phi_{t}^{\alpha} - \sum_{\alpha=1}^{3} \frac{\partial L_{\phi}}{\partial \phi^{\alpha}} \phi_{t}^{\alpha} - \sum_{\alpha=1}^{3} \frac{\partial L_{\phi}}{\partial \phi_{x}^{\alpha}} \phi_{tx}^{\alpha}$$

$$= -\sum_{\alpha=1}^{3} \frac{\partial}{\partial x} \left(\phi_{t}^{\alpha} \frac{\partial L_{\phi}}{\partial \phi_{x}^{\alpha}}\right)$$

$$= -\frac{\partial}{\partial x} h(\phi) \left(\phi_{*} \left(\frac{\partial}{\partial t}\right), \phi_{*} \left(\frac{\partial}{\partial x}\right)\right), \tag{15}$$

by using the formula : $p_{\alpha}^{i} = \sum_{\beta=1}^{3} \partial_{i} \phi^{\beta} h_{\alpha\beta}(\phi)$, i = 1,2; $\alpha = 1,2,3$,

where
$$\phi_*(\frac{\partial}{\partial t}) = \theta_t \frac{\partial}{\partial \theta} + \varphi_t \frac{\partial}{\partial \varphi} + \psi_t \frac{\partial}{\partial \psi}, \quad \phi_*(\frac{\partial}{\partial x}) = \theta_x \frac{\partial}{\partial \theta} + \varphi_x \frac{\partial}{\partial \varphi} + \psi_x \frac{\partial}{\partial \psi}.$$

Similarly, we have $\frac{\partial}{\partial x}H_{\phi}^{(x)} = -\frac{\partial}{\partial t}h(\phi)(\phi_*(\frac{\partial}{\partial x}),\phi_*(\frac{\partial}{\partial t})).$ Thus we have

Theorem 2. Let $\phi: (R^2, g_0) \to (N, h)$ be an extended harmonic mapping with associated potential function $G(\phi)$ and assume that $h(\phi)(\phi_*(\frac{\partial}{\partial t}), \phi_*(\frac{\partial}{\partial x}))$ is constant as a smooth function on R^2 .

Then $\frac{\partial}{\partial t}H_{\phi}^{(t)} = \frac{\partial}{\partial x}H_{\phi}^{(x)} = 0.$

Theorem 3. Let an extended harmonic mapping $\phi: (R^2, g_0) \to (N, h)$ with associated potential function $G(\phi)$ be conformal as a smooth mapping between Riemannian manifolds. Then

(a)
$$\frac{\partial}{\partial t}H_{\phi}^{(t)} = \frac{\partial}{\partial x}H_{\phi}^{(x)} = 0,$$

(b)
$$H_{\phi}^{(t)} = H_{\phi}^{(x)} = G(\phi).$$

Proof of Theorem 3. We have

$$H_{\phi}^{(t)} = \frac{1}{2} (h(\phi)(\phi_*(\frac{\partial}{\partial t}), \phi_*(\frac{\partial}{\partial t})) - h(\phi)(\phi_*(\frac{\partial}{\partial x}), \phi_*(\frac{\partial}{\partial x}))) + G(\phi), \tag{16}$$

$$H_{\phi}^{(x)} = \frac{1}{2} (h(\phi)(\phi_*(\frac{\partial}{\partial x}), \phi_*(\frac{\partial}{\partial x})) - h(\phi)(\phi_*(\frac{\partial}{\partial t}), \phi_*(\frac{\partial}{\partial t}))) + G(\phi). \tag{17}$$

Since ϕ is conformal, there exists a positive smooth function σ on R^2 such that

$$h(\phi)(\phi_*(\frac{\partial}{\partial x^i}), \phi_*(\frac{\partial}{\partial x^j})) = \phi^* h(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}) = \sigma g_0(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}), i, j = 1, 2.$$

Then we have the following as smooth functions on \mathbb{R}^2 .

$$h(\phi)(\phi_*(\frac{\partial}{\partial t}), \phi_*(\frac{\partial}{\partial x})) = 0, \quad h(\phi)(\phi_*(\frac{\partial}{\partial t}), \phi_*(\frac{\partial}{\partial t})) = h(\phi)(\phi_*(\frac{\partial}{\partial x}), \phi_*(\frac{\partial}{\partial x})) = \sigma. \tag{18}$$

The first formula of (18) implies (a) by using Theorem 2.

Furthermore, from (16),(17) and the second formula of (18), we obtain (b).

Q.E.D.

Canonical energy momentum tensor and conservation laws

We introduce the canonical energy momentum tensor $T(\phi)^i_{\ j}$ of ϕ :

$$T(\phi)^{i}_{j} = \sum_{\alpha=1}^{3} (\partial_{j} \phi^{\alpha}) p_{\alpha}^{i} - \delta_{j}^{i} L_{\phi}, \qquad i, j = 1, 2.$$

Then, from the formula (2), the direct computation implies

Proposition 4. Let $\phi: (R^2, g_0) \to (N, h)$ be an extended harmonic mapping with associated potential function $G(\phi)$. Then we have the conservation laws:

$$\sum_{i=1}^{2} \partial_{i} T(\phi)^{i}_{j} = 0, \quad j = 1, 2.$$

Equivalently,

$$\frac{\partial}{\partial t}H_{\phi}^{(t)} + \frac{\partial}{\partial x}T(\phi)_{1}^{2} = 0, \quad \frac{\partial}{\partial t}T(\phi)_{2}^{1} + \frac{\partial}{\partial x}H_{\phi}^{(x)} = 0.$$

Conservation laws and harmonic map

By using Theorem 3, we have

Theorem 5. Let (N,h) be a Riemannian manifold of dimension 3.

Let $\phi: (R^2, g_0) \to (N, h)$ be an extended harmonic mapping with associated potential function $G(\phi) = G \circ \phi$ and assume that ϕ is conformal as a mapping between Riemannian manifolds.

Furthermore, assume that the gradient vector fields $\nabla \phi^1, \nabla \phi^2$ and $\nabla \phi^3$ on (R^2, g_0) are linearly independent at each point, where this linearly independency does not depend on the way to choose a local coordinate system on N. Then, ϕ is a harmonic mapping.

APPENDIX 1. First variation formula

Let $\phi: (R^2, g_0) \to (N, h)$ be a smooth mapping, where (N, h) is an n-dimensional Riemannian manifold ($n \ge 3$). We take a smooth1-parameter variation $\Phi: (-\varepsilon, \varepsilon) \times R^2 \to N$.

of ϕ such that $\phi_t(p) := \Phi(t, p)$, $\phi_0 := \phi$, $t \in (-\varepsilon, \varepsilon)$, $p \in \mathbb{R}^2$.

The variation vector field W is denoted by

$$W(p) = \sum_{\alpha=1}^{n} W^{\alpha}(p) \left(\frac{\partial}{\partial y^{\alpha}}\right)_{\phi(p)} = \sum_{\alpha=1}^{n} \frac{d}{dt} \Big|_{t=0} \phi_{t}^{\alpha}(p) \left(\frac{\partial}{\partial y^{\alpha}}\right)_{\phi(p)}, p \in \mathbb{R}^{2},$$

where $\{y^1,...,y^n\}$ is a local coordinate system of N. Let D be a bounded domain in R^2 such that its boundary is a smooth Jordan curve and assume boundary condition: $W_{|_{\partial D}} = 0$. Assume that the Lagrangian L_{ϕ} of ϕ is

$$L_{\phi} = \frac{1}{2} \sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{n} \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta} h_{\alpha\beta}(\phi) - G(\phi), \quad G(\phi) = G \circ \phi, \quad G \in C^{\infty}(N).$$

First variation formula

We consider the action integral:

$$E_{\phi} = \iint_D L_{\phi}(\phi(p), (d\phi)(p)) dx^1 dx^2, \quad p = (x^1, x^2).$$

Then, by using Proposition 1, we have the first variation formula as follows:

$$\begin{split} \frac{d}{dt}|_{t=0} E_{\phi_t} &= \sum_{\gamma=1}^n \iint_D \frac{\partial L_{\phi}}{\partial \phi^{\gamma}} W^{\gamma} dx^1 dx^2 + \sum_{j=1}^2 \sum_{\gamma=1}^n \iint_D \frac{\partial L_{\phi}}{\partial (\partial_j \phi^{\gamma})} \partial_j W^{\gamma} dx^1 dx^2 \\ &= -\sum_{\gamma=1}^n \iint_D \{ \sum_{j=1}^2 \partial_j (\frac{\partial L_{\phi}}{\partial (\partial_j \phi^{\gamma})}) - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}} \} W^{\gamma} dx^1 dx^2 \\ &= -\iint_D h_{\phi} (\sum_{\beta,\gamma=1}^n h^{\beta \gamma} (\sum_{j=1}^2 \partial_j p_{\gamma}^j - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}}) (\frac{\partial}{\partial y^{\beta}})_{\phi}, W) dx^1 dx^2, \\ &= \frac{d}{dt}|_{t=0} E_{\phi_t} = -\iint_D h_{\phi} (\tau_{\phi} + \operatorname{grad}_h G(\phi), W) dx^1 dx^2. \end{split}$$

First variation formula

Proposition. The following (a) and (b) are equivalent:

(a)
$$\frac{d}{dt}\big|_{t=0} E\phi_t = 0.$$

(b)
$$\tau_{\phi} = -\operatorname{grad}_{h} G(\phi),$$

where we call ϕ the extended harmonic mapping with the potential function $G \in C^{\infty}(N)$.

Remark. If ϕ is an extended harmonic mapping, whose associated potential function G is a constant function on N, then we have

$$\left. \frac{d}{dt} \right|_{t=0} E_{\phi_t} = \frac{d}{dt} \left|_{t=0} E_{\phi_t}^0,\right.$$

where

$$E_{\phi_t}^0 = \frac{1}{2} \sum_{i=1}^2 \sum_{\alpha,\beta=1}^n \iint_D \partial_i \phi_t^{\alpha} \partial_i \phi_t^{\beta} h_{\alpha\beta}(\phi_t) dx^1 dx^2.$$

APPENDIX 2. Second variation formula

Next we consider a smooth 2-parameter variation Ψ of extended harmonic mapping $\phi: (R^2, g_0) \to (N, h)$ such that

$$\begin{split} \Psi: (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times R^2 &\to N, \quad \phi_{s,t}(p) \coloneqq \Psi(s,t,p), \ \phi_{0,0} \coloneqq \phi, \ p \in R^2, \\ s,t \in (-\varepsilon, \varepsilon). \end{split}$$

The variation vector fields $V=\Psi_*(\frac{\partial}{\partial s})|_{s=t=0}, \ W=\Psi_*(\frac{\partial}{\partial t})|_{s=t=0}$ with the boundary condition: $V_t|_{\partial D}=W_s|_{\partial D}=0,$ where

$$V_t := \Psi_*(\frac{\partial}{\partial s})|_{s=0}, \ W_s := \Psi_*(\frac{\partial}{\partial t})|_{t=0}, \ V_0 = V, \ W_0 = W.$$

Then we have

$$\frac{\partial}{\partial t}\big|_{t=0} E_{\Psi} = \sum_{\gamma=1}^{n} \iint_{D} (\frac{\partial L_{\phi_{s,t}}}{\partial \phi_{s,t}^{\gamma}}\big|_{t=0} \partial_{t}\big|_{t=0} \phi_{s,t}^{\gamma} + \sum_{j=1}^{2} \frac{\partial L_{\phi_{s,t}}}{\partial (\partial_{j} \phi_{s,t}^{\gamma})}\big|_{t=0} \partial_{j} (\partial_{t}\big|_{t=0} \phi_{s,t}^{\gamma})) dx^{1} dx^{2}.$$

By using the boundary condition,

$$\frac{\partial}{\partial t}\big|_{t=0} E_{\Psi} = \sum_{\gamma=1}^{n} \iint_{D} \left(\frac{\partial L_{\phi_{s,0}}}{\partial \phi_{s,0}^{\gamma}} - \sum_{j=1}^{2} \partial_{j} \left(\frac{\partial L_{\phi_{s,0}}}{\partial (\partial_{j} \phi_{s,0}^{\gamma})} \right) \right) W_{s}^{\gamma} dx^{1} dx^{2},$$

where

$$W_s = \sum_{\gamma=1}^n \left(\frac{\partial}{\partial t} \, \phi_{s,t}^{\gamma} \left(\frac{\partial}{\partial y^{\gamma}} \right)_{\phi_{s,t}} \right) \big|_{t=0} = \sum_{\gamma=1}^n W_s^{\gamma} \left(\frac{\partial}{\partial y^{\gamma}} \right)_{\phi_{s,t}} \big|_{t=0} .$$

By using Proposition 1, we have

$$\frac{\partial}{\partial t}\big|_{t=0} E_{\Psi} = -\iint_{D} h_{\phi_{s,0}} (\tau_{\phi_{s,0}} + grad_{h_{\phi_{s,0}}} G(\phi_{s,0}), \ W_{s}) \ dx^{1} dx^{2}$$

$$=-\iint_{D}h_{\phi_{s,0}}(\sum_{i=1}^{2}\hat{\nabla}_{e_{i}}\Psi_{*}(e_{i})\mid_{t=0},W_{s})\,dx^{1}dx^{2}-\iint_{D}h_{\phi_{s,0}}(grad_{h_{\phi_{s,0}}}G(\phi_{s,0}),\;W_{s})\,dx^{1}dx^{2},$$

where $\hat{\nabla}$ denotes the induced connection of the induced vector bundle $\Psi^{-1}TN$ and $e_1 = \frac{\partial}{\partial x^1}$, $e_2 = \frac{\partial}{\partial x^2}$ stand for the standard basis of R^2 .

Hence, we have

$$(\#) \frac{\partial}{\partial s}|_{s=0} \left(\frac{\partial}{\partial t}|_{t=0} E_{\Psi}\right) = -\iint_{D} h_{\phi} \left(\sum_{i=1}^{2} \hat{\nabla}_{\frac{\partial}{\partial s}} \hat{\nabla}_{e_{i}} \Psi_{*}(e_{i})|_{s=t=0}, W\right) dx^{1} dx^{2}$$

$$-\iint_{D} h_{\phi} \left(\sum_{i=1}^{2} \hat{\nabla}_{e_{i}} \phi_{*}(e_{i}), \hat{\nabla}_{\frac{\partial}{\partial s}} \Psi_{*}(\frac{\partial}{\partial t})|_{s=t=0}\right) dx^{1} dx^{2}$$

$$-\iint_{D} h_{\phi} \left(\nabla_{V}^{N} \operatorname{grad}_{h} G(\phi), W\right) dx^{1} dx^{2} - \iint_{D} h_{\phi} \left(\operatorname{grad}_{h} G(\phi), \hat{\nabla}_{\frac{\partial}{\partial s}} \Psi_{*}(\frac{\partial}{\partial t})|_{s=t=0}\right) dx^{1} dx^{2},$$

In this formula, the sum of the second and the fourth terms vanishes, since ϕ is an extended harmonic mapping. Note that the first $\hat{\nabla}$ in the second term of (#) stands for the induced connection of $\phi^{-1}TN$.

Note that

$$\begin{split} \hat{\nabla}_{\frac{\partial}{\partial s}} \hat{\nabla}_{e_i} \Psi_*(e_i) \big|_{s=t=0} &= R^N (\Psi_* \frac{\partial}{\partial s}, \Psi_* e_i) \Psi_* e_i \big|_{s=t=0} + \hat{\nabla}_{e_i} \hat{\nabla}_{\frac{\partial}{\partial s}} (\Psi_* e_i) \big|_{s=t=0} \\ &= R^N (V, \phi_* e_i) \phi_* e_i + \hat{\nabla}_{e_i} \hat{\nabla}_{e_i} V, \end{split}$$

where \mathbb{R}^N denotes the Riemannian curvature tensor field of (N,h). The first term of (#) is

$$\iint_{D} h_{\phi}(\overline{\Delta}_{\phi}V - R_{\phi}V, W) dx^{1}dx^{2} = \iint_{D} h_{\phi}(J_{\phi}V, W) dx^{1}dx^{2},$$

where $\overline{\Delta}_{\phi}$ stands for the rough Laplacian with respect to $\phi^{-1}TN$ [U] and R_{ϕ} is defined by $R_{\phi}X \coloneqq \sum_{i=1}^2 R^N(X,\phi_*e_i)\phi_*e_i, \quad X \in \Gamma(\phi^{-1}TN).$

Proposition (Second variation formula).

$$\begin{split} &\frac{\partial^2}{\partial s \partial t}\big|_{s=t=0} E_{\Psi} = \iint_D h_{\phi}(J_{\phi}V - \nabla_V^N grad_h G(\phi), W) \, dx^1 dx^2 \\ &= \iint_D h_{\phi}(J_{\phi}V - H_{G(\phi)}V, W) \, dx^1 dx^2, \qquad H_{G(\phi)}V \coloneqq \nabla_V^N grad_h G(\phi), \end{split}$$

where ∇^N denotes the Levi-Civita connection of (N,h).

 $J_{\phi}=\overline{\Delta}_{\phi}-R_{\phi}$ is called the Jacobi operator [U] and we call $^{H}G(\phi)$ the Hesse operator. They are the self-adjoint operators with respect to L^{2} -metric. This second variation formula may be valid for a smooth mapping $\phi:(M,g)\to(N,h)$, where (M,g) and (N,h) are a compact Riemannian manifold (without boundary) and a Riemannian manifold, respectively [K].

Complex Lagrangian

Let $\phi:(C,g_0)\to (N,h)$ be a holomorphic mapping, where (C,g_0) is 1-dim. complex Euclidean space with standard metric g_0 and (N,h) is an n-dim. complex manifold with Hermitian metric h, respectively.

We consider the following complex Lagrangian of ϕ :

$$L_{\phi} = \sum_{i=1}^{2} \sum_{\alpha,\beta=1}^{n} \partial_{i} \phi^{\alpha} \partial_{i} \overline{\phi}^{\beta} h_{\alpha \overline{\beta}}(\phi) - G(\phi),$$

where $\phi^{\alpha} := \varsigma^{\alpha} \circ \phi$, $\overline{\phi}^{\alpha} := \overline{\varsigma}^{\alpha} \circ \phi$, $(\varsigma^{1},...,\varsigma^{n})$ is a complex local coordinates system on N, and $G \in C_{c}^{\infty}(N)$ is a complex valued smooth function on N,

$$g_{0} \coloneqq \operatorname{Re}(dz \otimes d\overline{z}) = \sum_{i=1}^{2} dx^{i} \otimes dx^{i}, \quad \phi_{*}(\frac{\partial}{\partial x^{i}}) = \sum_{\alpha=1}^{n} (\partial_{i} \phi^{\alpha} (\frac{\partial}{\partial \zeta^{\alpha}})_{\phi} + \partial_{i} \overline{\phi}^{\alpha} (\frac{\partial}{\partial \overline{\zeta}^{\alpha}})_{\phi}),$$

$$(z = x^{1} + \sqrt{-1} x^{2})$$

$$\partial_{i} \phi^{\alpha} \coloneqq \frac{\partial}{\partial x^{i}} \phi^{\alpha} = \frac{\partial}{\partial x^{i}} u^{\alpha} (x^{1}, x^{2}) + \sqrt{-1} \frac{\partial}{\partial x^{i}} v^{\alpha} (x^{1}, x^{2}), \quad i = 1, 2, \alpha = 1, ..., n.$$

Complex Lagrangian

We can define the generalized momenta:

$$p_{\gamma}^{i} := \frac{\partial L_{\phi}}{\partial (\partial_{i} \phi^{\gamma})}, \quad \overline{p}_{\gamma}^{i} := \frac{\partial L_{\phi}}{\partial (\partial_{i} \overline{\phi}^{\gamma})}, \quad i = 1, 2, \quad \gamma = 1, ..., n.$$

Then we have

$$\begin{split} &\sum_{\gamma,\mu=1}^{n}(\sum_{i=1}^{2}\partial_{i}\,p_{\gamma}^{i}-\frac{\partial\,L_{\phi}}{\partial\phi^{\gamma}})h^{\gamma\overline{\mu}}(\frac{\partial}{\partial\overline{\varsigma}^{\mu}})_{\phi}=\tau_{\phi}^{(-)}+grad_{h}^{(-)}G(\phi),\\ &\sum_{\gamma,\mu=1}^{n}(\sum_{i=1}^{2}\partial_{i}\,\overline{p}_{\gamma}^{i}-\frac{\partial\,L_{\phi}}{\partial\overline{\phi}^{\gamma}})h^{\overline{\gamma}\mu}(\frac{\partial}{\partial\varsigma^{\mu}})_{\phi}=\tau_{\phi}^{(+)}+grad_{h}^{(+)}G(\phi), \end{split}$$

where

$$grad_{h}^{(+)}G(\phi) = \sum_{\lambda,\mu=1}^{n} h^{\lambda \overline{\mu}} \frac{\partial G(\phi)}{\partial \overline{\phi}^{\mu}} (\frac{\partial}{\partial \varsigma^{\lambda}})_{\phi}, \quad grad_{h}^{(-)}G(\phi) = \sum_{\lambda,\mu=1}^{n} h^{\lambda \overline{\mu}} \frac{\partial G(\phi)}{\partial \phi^{\lambda}} (\frac{\partial}{\partial \overline{\varsigma}^{\mu}})_{\phi},$$

Complex Lagrangian

and, using the coefficients of torsion-free affine connection of N,

$$\tau_{\phi}^{(+)} \coloneqq \sum_{i=1}^{2} \sum_{\gamma=1}^{n} (\partial_{i}^{2} \phi^{\gamma} + \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\beta}^{\gamma}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \phi^{\beta} + 2 \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\overline{\beta}}^{\gamma}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \overline{\phi}^{\beta}) (\frac{\partial}{\partial \varsigma^{\gamma}})_{\phi},$$

$$\tau_{\phi}^{(-)} \coloneqq \sum_{i=1}^{2} \sum_{\gamma=1}^{n} (\partial_{i}^{2} \overline{\phi}^{\gamma} + \sum_{\alpha,\beta=1}^{n} \Gamma_{\overline{\alpha}\overline{\beta}}^{\overline{\gamma}}(\phi) \partial_{i} \overline{\phi}^{\alpha} \partial_{i} \overline{\phi}^{\beta} + 2 \sum_{\alpha,\beta=1}^{n} \Gamma_{\alpha\overline{\beta}}^{\overline{\gamma}}(\phi) \partial_{i} \phi^{\alpha} \partial_{i} \overline{\phi}^{\beta}) (\frac{\partial}{\partial \varsigma^{\gamma}})_{\phi}.$$

Note that the tension field τ_{ϕ} of ϕ is $\tau_{\phi} = \tau_{\phi}^{(+)} + \tau_{\phi}^{(-)}$.

Then the following (a) and (b) are equivalent:

(a) (Euler-Lagrange equations)

$$\sum_{i=1}^{2} \partial_{i} p_{\gamma}^{i} - \frac{\partial L_{\phi}}{\partial \phi^{\gamma}} = 0, \quad \sum_{i=1}^{2} \partial_{i} \overline{p}_{\gamma}^{i} - \frac{\partial L_{\phi}}{\partial \overline{\phi}^{\gamma}} = 0, \quad \gamma = 1, ..., n.$$

(b)
$$\tau_{\phi}^{(-)} = -\operatorname{grad}_{h}^{(-)}G(\phi), \quad \tau_{\phi}^{(+)} = -\operatorname{grad}_{h}^{(+)}G(\phi).$$

Complex Hamiltonians

We have the next relationship:

The Euler-Lagrange equations are equivalent to

$$\tau_{\phi} = -\operatorname{grad}_{h}G(\phi),$$

where

$$\operatorname{grad}_h G(\phi) \coloneqq \operatorname{grad}_h^{(+)} G(\phi) + \operatorname{grad}_h^{(-)} G(\phi).$$

We can define the Hamiltonians as follows:

$$H_{\phi}^{(i)} := \sum_{\alpha=1}^{n} \partial_{i} \phi^{\alpha} p_{\alpha}^{i} + \sum_{\alpha=1}^{n} \partial_{i} \overline{\phi}^{\alpha} \overline{p}_{\alpha}^{i} - L_{\phi}, \quad i = 1, 2.$$

Then we have

$$\partial_1 H_{\phi}^{(1)} = -\,\partial_2 \,\, h_{\phi}(\phi_*(\frac{\partial}{\partial x^1}),\phi_*(\frac{\partial}{\partial x^2})), \,\, \partial_2 H_{\phi}^{(2)} = -\,\partial_1 \,\, h_{\phi}(\phi_*(\frac{\partial}{\partial x^1}),\phi_*(\frac{\partial}{\partial x^2})).$$

Conservation laws

From the definitions of Hamiltonians, we see

$$\begin{split} H_{\phi}^{(1)} &= \frac{1}{2} \{ h_{\phi}(\phi_*(\frac{\partial}{\partial x^1}), \phi_*(\frac{\partial}{\partial x^1})) - h_{\phi}(\phi_*(\frac{\partial}{\partial x^2}), \phi_*(\frac{\partial}{\partial x^2})) \} + G(\phi), \\ H_{\phi}^{(2)} &= \frac{1}{2} \{ h_{\phi}(\phi_*(\frac{\partial}{\partial x^2}), \phi_*(\frac{\partial}{\partial x^2})) - h_{\phi}(\phi_*(\frac{\partial}{\partial x^1}), \phi_*(\frac{\partial}{\partial x^1})) \} + G(\phi). \end{split}$$

If ϕ has the conformal property such as

$$h_{\phi}(\phi_{*}(\frac{\partial}{\partial x^{1}}), \phi_{*}(\frac{\partial}{\partial x^{2}})) = 0, \quad h_{\phi}(\phi_{*}(\frac{\partial}{\partial x^{1}}), \phi_{*}(\frac{\partial}{\partial x^{1}})) = h_{\phi}(\phi_{*}(\frac{\partial}{\partial x^{2}}), \phi_{*}(\frac{\partial}{\partial x^{2}})),$$

then we have the conservation laws:

$$\partial_1 H_{\phi}^{(1)} = \partial_2 H_{\phi}^{(2)} = 0,$$
 $H_{\phi}^{(1)} = H_{\phi}^{(2)} = G(\phi).$

where

Extended harmonic mapping

Assume that $\phi:(C,g_0)\to (N,h)$ is an extended harmonic, holomorphic mapping equipped with potential function G with respect to the complex Lagrangian and ϕ has the conformal property.

If the complex 1-forms $d\phi^1,...,d\phi^n,d\overline{\phi}^1,...,d\overline{\phi}^n$ are linearly independent over the complex number field at each point, where this linearly independency does not depend on the way to choose a complex local coordinate system on N, then the tension field τ_{ϕ} vanishes.

References

- [K1] K.Kikuchi, The construction of rotation surfaces of constant mean curvature and the corresponding Lagrangians, Tsukuba J. Math.36(1) (2012),43-52.
- [K2] K.Kikuchi, S^{1}-equivariant CMC surfaces in the Berger sphere and the corresponding Lagrangians, Advances in Pure Math.3(2013),259-263.
- [K3] K.Kikuchi, S^{1}-equivariant CMC-hypersurfaces in the hyperbolic 3-space and the corresponding Lagrangians, Tokyo J. Math.36(1)(2013),207-213.
- [K4] K.Kikuchi, S^{1}-equivariant CMC surfaces in the Berger sphere, the hyperbolic 3-space and the corresponding Hamiltonian systems, FJDS 22(1) (2013),17-31.
- [N] S.Nishikawa, Kikagakuteki Henbunmondai (Japanese), Iwanami, 1998.
- [U] H.Urakawa, Calculus of variations and harmonic maps, Translations of Mathematical Monographs, Vol. 132, AMS, 1993.

Thank you!