Extended harmonic mappings and
Euler-Lagrange equations



Euler-Lagrange equations

Let ¢:(M,g)— (N,h) beasmooth mapping, where (M,g) and (N,h) are
Riemannian manifolds of dimension 2 and 3 with Riemannian metric 9 and h,
respectively. Then we consider the following Lagrangian (density):
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where ¢ =y%o¢, a=123. (xl,xz), (yl, y2, y3) are local coordinates systems
on M,N. 96%,8,6% denote the partial derivatives 8?(1 ¢a’a)a(2 #° respectively.
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The generalized momenta p('x can be defined by
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Euler-Lagrange equations

where 5i¢a can be regarded as the components of tensor field [N]:
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Then we have the transformation formulas of ai¢“ and p; ;
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under the transformation of coordinates : (xl,xz) — (>"<‘1,>"<‘2) and

(yl, y2, y3) — (371, 372, 373) . Hence pia can be regarded as the components

of tensor field: 23,6 a

p((t’ X)) - igl aZ::]- pa(g)(t’x) ® (dy )¢((t,X))
Proposition 1. Assume that (M. 9) is (Rz,go), where g, is the standard
metric on R2. Then, under the Lagrangian (1) of ¢, the following (a) and (b)



Euler-Lagrange equations

are equivalent:
(a) (Euler-Lagrange equations)
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(b) r, = grad, G(#).
where 7 stands for the tension field of ¢ and
grad, G(¢) = %1h“/3(¢)« j ) G(¢»(—ﬂ>¢
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Euler-Lagrange equations
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On the other hand, we have



Euler-Lagrange equations
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where I’ of denotes the coefficients of Levi-Civita connection of (N,h).
Then we have
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we obtain



Extended harmonic mapping

S, & i 6L¢ MY 0
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This formula proves Prop. 1.

In this paper, if the tension field of ¢ is given by the formula (b) in Prop.1
for some GeC™(N), ¢ is called an extended harmonic mapping and G(¢)
is called the potential function associated with ¢ .
When we give an extended harmonic mapping ¢ such that the associated
potential function is G(#) , we always consider the Lagrangian (1) and the
corresponding Euler-Lagrange equations (a), throughout the paper.

¢ is called an extended harmonic immersion if ¢ is an extended harmonic
mapping and an immersion.



Extended harmonic mapping

Let ¢:(R?, Jy) — (H 3(-1),h) be an extended harmonic mapping with

the associated potential function G(¢) , where 9y and h stand for the
standard metric on R? and the Riemannian metric on the hyperbolic 3-space
H3(-1) 3of constant curvature —1, respectively, and h can be given by

> hgpd y“®d yﬂ
a, =1

= (d yH ® (d yY +cosh? y (d y2) ® (d y?) + cosh? ytcosh? y2(d y*) ® (d y°),
where (y,y%,v°) is alocal coordinate system on H3(-1).

By making use of Euler-Lagrange equations (2), we have
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Associated potential function

The formula (a) implies

(d) (ngé)_ A¢9+2<V¢,Vgo>smh2¢9+%<vw,vw>smh2¢9003h )

and also, from the formula (b) and (c), we have

@ O 1

— —cosh?0 Ap + L <V, Vi > cosh? 6§ sinh 20— < VO,V ¢ > sinh 26,

2
() %l/(?) — —cosh? 6 cosh? @ Ay—<V0,Viy >sinh260 cosh? 1,

— <V, Vi >sinh2¢ cosh? 0,
and (d),(e) and (f) are obtained by using the following Lagrangian:

L, =140+ 0,2+ (0 + 9,2 cosh? 0+ (y,” +y, ) cosh® 0 cosh’ g} - G (9). a



Determination of tension field

The tension field T of ¢ is given by

11(¢) 8(2(0¢) 666) 22 (¢) ac;((f) agp h33(¢) GSV(?) aal// ’

where the right hand side formula does not depend on the way to choose a

local coordinate system on H 3(—1) , and

i) =1 h?2@)=—1 hB¥@PH=—yt
cosh” @ cosh” @ cosh” ¢

and also a(gl(f)’a(;((f) and 8(;5/@ are given by the formulas (d),(e) and (f).

Assume that g, ¢ s are cyclic coordinates, i.e., 5L¢ OLy OLy 0

Then we have 00 5608 oy
r¢——(< Vo,Vo>+<Vy, Vz,u>cosh @)sinh @ cosh —~ 50
—<Vw,Vw>Sinhg0COSh(pi. (5)
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Conservative formula for generalized momenta

We consider the following conservative formula for generalized momenta:
2 3 .
P0=2 15 Py (@) @ (ﬁ)a,x) oW )yeny=0  ©
let ¢: (R, 9y) (H3(=1),h) be an extended harmonic mapping with
associated potential function G(¢)=Gog, Ge C°°(H3(—1)).
Throughout the paper, we use the following notation:
0=¢'=y og p=p"=y'oh y=¢"=y>e4
The formula (6) implies that g ¢, are the cyclic coordinates with respect to
Euler-Lagrange equations (2). Then we holds the following formula:
Y250 =0, a=123.
This formula may be called the strong Euler-Lagrange equations. Under the
strong Euler-Lagrange equations, the tension field of ¢ is given by (5).



Conservative formula for generalized momenta

The conservative formula (6) for generalized momenta implies that
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(iii) 0,p, =0,p, =0,
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(v) 0,p; =0,p; =0.



Conservative formula for generalized momenta

The formula (i) implies that
ett - etx - th - exx =0,
from which, we can choose 6 as 6(t,x) =t+x+c. (c: constant)

The formula (ii) and (iii) imply that
ﬁt (gpt cosh? Q) = ax(gpt cosh® 0) =0,

2 2
at (gpx cosh” @) = 8X(¢X cosh” ) =0,

1 .
cosh2 0

from which, we can choose ¢ as ¢, = o, =
Similarly, by using (iv) and (v),
We can choose ¥ such as

1
cosh?6(t, x) cosh?@(t,x)

Wi=V¥Wx=
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Conservative formula for generalized momenta

Hence, we have

£ X) = dt dx | 3
P Icosh26?(t,x)jLIcosshZQ(t,x) ©

from the formula (iv),(v), we can choose v as follows:

. dt dx _ 9
vt Jcosh2H(t,x)coshzcl)(t,x)JrJcoshzH(LX)COShZ(P(t’X) N




Determination of associated potential function

The formulas (2) and (6) imply that
oL
¢ ¢ _ ¢
50 =0, 50 0 and T =0, (10)
thatis, 8,90, and v are the cyclic coordinates.

Since 6,9, and v is the cyclic coordinates and (4), we have

8(2(9¢) 1(|V > +| Vi |° cosh? p)sinh 26, (1)
52((;’5) 1|ng| cosh? @ sinh 2¢, (12)
0G(¢) _
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where Vg,V stand for the gradients of ¢, on (R?, gy), respectively.



Determination of tension field

The formulas (8) and (9) imply that

Vot l=— 32— IVptl=—y Y2 )
cosh” 4(t, x) cosh” @(t, x)cosh” o(t, X)

from the formulas (11),(12),(13) and (14), we obtain

2(cosh® p(t, x) +1)
cosh® o(t, x) cosh? o(t, X)
2sinh o(t, X)
cosh? o(t, x) cosh® o(t, X)
Using (11),(12) and (13), we have the tension field 74 of 9 -
0

2 . .
Tp= —%(< Vo,Vo>+<Viy, Vi >cosh” ¢)sinh 29@
0

Slnh2(p<Vz//,Vw>%.

G(g) = | sinh 4(t, x) d@

do.
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Extended harmonic mapping

Thus, by making use of conservative formula (6) of generalized momenta,
we can construct an example of extended harmonic mapping, which is not
an immersion.



Extended harmonic CMC-H immersion

Let 4:(R? 9,) > (H3(=1),h) be an extended harmonic CMC-H immersion
with associated potential functionG(¢) =G o ¢.
Then, since z(¢) = - grad, G(¢),, we have1|| grad G(¢) |, = 2H and the mean
curvature vector field of ¢ is given by 574

H stands for the constant mean curvature of ¢.
Under the assumption of the cyclic coordinates, (11),(12) and (13) hold, then

grad, G(¢) = ' (9) 2P0 122 () C2 ) 0 33y 21 0

06 88 oQ é(p 81// oy
_1 0 0
where (|V(p| +|Vw| cosh? @)sinh 260 - 50 2|Vz//| S|nh2(p8¢

h11(¢) =1, h22 (¢) - COSh 0; h33 (¢) = COSh 0 COSh Q,
h(#) =y, (#) =5 (#) =y (§) =, (4) = hy (§) =O.



Extended harmonic CMC-H immersion

Then, since || grad, G(¢) ||ﬁ= 4H 2, we have
(Vol? +| Vi |? cosh? p)?sinh? 20 + |V |* sinh? 2¢ cosh?® @ = 16H 2.

Hence, we can take the parameter function o= p(t,x) such that
(Vo |? + |V |? cosh? p)sinh 20 = 4H cos p,
|V |2 sinh 2¢pcosh @ = 4H sin p.

Then, under the assumption of cyclic coordinates, we can choose
the associated potential function with respect to ¢ as follows:
G(¢) =2H([cos p d@+ [cosh@ sin p dg).
Consequently, the potential function G(#) contains the constant mean
curvature H itself.



Hamiltonians and conservation laws

Let 4: (Rz'go) — (N, h) (dimN =3) be an extended harmonic mapping with
the associated potential function G(¢).

We use the notations: ¢, =0,4", ¢ =0 ¢“, @=123.

Then we define the Hamiltonian densities H(Y and H® with respectto ¢ :

HY) = z¢“p1 - Ly(g.dp). HY = z¢“p2 - L,(4.d9).

where the Lagrangian | can be regarded as a smooth function on
the 1-jet bundle J*((R%,g,).(N,h)) .

o g 1 36L 38L¢a 38L¢a
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Hamiltonians and conservation laws

by using Euler-Lagrange equations (2), we have

3 3 oL 3 oL
t) _ ¢ 2\ p a ¢
8’[ H¢ Z ( ¢a 2pa)¢t a2:15¢a ¢'[ azzla¢a ¢tx
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by using the formula : ﬂzlﬁ ¢ﬁh 5(9), 1=12 a=123,
0 0 0 Oy _ 0 0 0
where ¢*(8t) o 56’+¢t 8gp+l//t al//1 ¢*(§)_9X@+¢X%+l//x W



Hamiltonians and conservation laws

Similarly, we have 0 () __0 NEAWNEAN
Thus we have X H¢ a e (ax) ’ (at))

Theorem 2. Let 4:(R?, gy) — (N, h) be an extended harmonic

mapping with associated potential function G(¢) and assume that
h(¢)(¢*(%),¢*(%)) is constant as a smooth function on R?.

Then

Theorem 3. Let an extended harmonic mapping ¢: (R2, go) — (N, h)

with associated potential function G(#) be conformal as a smooth mapping

betweeg Ri?t)man@nial(w ;nanifolds. Then
N X —
(@) ag =axHy =0

b (1) _ () _
(b) H, =H" =G(#).



Hamiltonians and conservation laws

Proof of Theorem 3. We have

HS) = 5 (@@ () ~N@)Be(5). 85 + G (®). (16)
HEY = S (@@ 5). $x(5) =D (5). () + G (9. a7

Since ¢ is conformal, there exists a positive smooth function o on R?

B X R R T R T SR
OX 6 OX
Then we have the foIIowmg as smooth functlons on R?.
N (Be(2). () =0, hB)(B( D) () =D B( D). (LN =0, (8
The first formula of (18) implies (a) by using Theorem 2.
Furthermore, from (16),(17) and the second formula of (18), we obtain (b).

Q.E.D.



Canonical energy momentum tensor and conservation laws

We introduce the canonical energy momentum tensor T(¢)'j of ¢ :

i3 i _—
T(¢)j _az=1(aj¢ )p0[—5j L¢, 1, ] =12

Then, from the formula (2), the direct computation implies

Proposition 4. Let 4 (Rz, gq) = (N, h) be an extended harmonic

mapping with associated potential function G(¢) . Then we have the

conservation laws : 2 .
>0.T (¢)'j =0, j=12.
=1

Equivalently, 5w s , 5 L 5
t n O 0 (%) _
§H¢ +&T(¢)1—O, GtT(¢)2+8XH¢ 0.



Conservation laws and harmonic map

By using Theorem 3, we have
Theorem 5. Let (N,h) be a Riemannian manifold of dimension 3.

Let ¢: (Rz,go) — (N,h) be an extended harmonic mapping with
associated potential function G(¢)=Go¢ and assume that ¢ is conformal
as a mapping between Riemannian manifolds.

Furthermore, assume that the gradient vector fields V¢1,V¢2 and V¢3
on (R, Jo) are linearly independent at each point , where this linearly
independency does not depend on the way to choose a local coordinate
system on N. Then, ¢ is a harmonic mapping.



APPENDIX 1. First variation formula

Let ¢:(R2,go) — (N,h) be a smooth mapping, where (N,h) isan n-dimen-
sional Riemannian manifold (n>3 ). We take a smoothl-parameter variation
D:(-¢&,8) % R2—> N,
of ¢ suchthat ¢ (p)=@(t p), @,=¢ te(-c¢), peR?
The variation vector field W is denoted by
W(p) - z_yv OISR 3
where {y Y, ™ is a local coordinate system of N Let p be a bounded

4 4% 92 2
) dtlt:0¢t (p)(ﬁ ya)¢(p)’ pe R )

domain in R? such that its boundary is a smooth Jordan curve and assume

boundary condition: W|aD:O' Assume that the Lagrangian L¢ of ¢ is

2 n
_%g % a¢“ai¢ﬂhaﬂ(¢)—e(¢), G(#)=Geog, GeC™(N).



First variation formula

We consider the action integral :
Es= o La(4(p).(d)(p)) dx'dx®, P =(x"x?).

Then, by using Proposition 1, we have the first variation formula as follows:

q n aL¢ 1. 9 2 n 8|_¢ 1., 2
0B, =2 llp—— W”dxdx“+ X X 0 W7 dx dx
dt |t—0 ¢t 7:1”D5¢7 jzl;/:l”D a(@j¢7) J

n 2 oL oL
== Il 0j(c =2 ) -2 dx'dx?

y=1 j=1 5(8J¢ ) a¢

n 2 ; 8L¢ 0 1 2
”D ¢ By a1 J p7 @¢7 ayﬂ ¢

d
ftheo €5 =~ lohg( 7+ grad, G W ) dx'ox”



First variation formula

Proposition. The following (a) and (b) are equivalent:
(@ d _

dt |t=0 E¢t =0

(b) 74=—grad,G(¢g),

where we call ¢ the extended harmonic mapping with the potential
function G eC*(N).

Remark. If ¢ is an extended harmonic mapping, whose associated
potential function G is a constant function on N, then we have

|t 0 ¢ dtlt 0E¢t

where 2 n
ES =22 > ootk "o B N (B) Xl



APPENDIX 2. Second variation formula

Next we consider a smooth 2-parameter variation ¥ of extended harmonic
mapping ¢:(R?, go)—>(N h) such that
Vi(-g,8)x(-£,6)xR° >N, ¢ (p)=F(6.1p) ggo=4 PR

s,te(-¢,¢).
V = _ . (O
The variation vector fields T*( ) ls_egr W =P=(5) 5o

with the boundary condition: Vi |aD:WS |aD: 0

where
Vem WD) o W= (D)o Vo=V, Wy =W.

Then we have

8L oL
y
08 (8 |t o¢ ))dxdx :

|tO‘P



Second variation formula

By using the boundary condition,

) ; oL 5 6L¢
Y1 E_ = ’ 0. (——— W7d 1
ot |t=0 L4 2:11”D(a¢570 le J(a(a ¢ ))) X X
where y |

2( ¢St(—) ) zvv (W) o

By using Prop05|t|on 1, we have

0 1,2
ot koo By =" Dh¢s 0 (%,o ’ gradh¢ Gld;9): W) dxdx
' s,0

1,2 1,2
__HDh¢so('Zlv I‘P (&) 1] _y W s) dxdX —ijh¢SO(gradh¢ G(¢S’0), W) dxdx”,
— ’ s,0

where V denotes the induced connection of the induced vector bundle

$TN and g =i1, e, =% stand for the standard basis of R”
OX OX



Second variation formula

Hence, we have

(#) 21y (Sl_gEy) =T ph <zlvvl‘11(e)|_t:0,vv)dx1dx2
- 0S

_IIDh¢(ZV |¢*(e) V b4 (at)l e 0) dX dX
as
~[[ o, (v, Narad, G(g), W) dx'ox® - [[ b (grad, G(#),V , Wu(S

as
In this formula, the sum of the second and the fourth terms vanishes, since

1,,2
) lg_yg) I,

¢ is an extended harmonic mapping. Note that the first V in the second
term of (#) stands for the induced connection of ¢_1TN.



Second variation formula

Note that
A A . N Q A A
Vavei ‘P*(ei) |s:t:0_ R (Y, S ,LP*ei)\P*ei |S:t:0 +Veiva(\P*ei)|
oS oS
=RV (V.ge)pe +V_V V,
|

s=t=0

where RN denotes the Riemannian curvature tensor field of (N,h).
The first term of (#) is

— 1,2 1,2
| Dh¢(A¢V—RV,W)dx dx“ =] Dh¢(J¢V,W)dx dx“,

¢

where Z¢ stands for the rough Laplacian with respect to ¢_1TN [U] and

R¢ is defined by 2\ 9
R,X = YR (X.48)de, X e[($ TN)
i=1



Second variation formula

Proposition (Second variation formula).
2
0 _
Osot |s:t=0 E‘P B ” D

1,2 . oN
=[[ph, QY =Hg VW) dCdx®,  He V=V, grad, G(¢).

N 1,.2
h, (3 V =V grad, G(¢), W) dx'dx

where V" denotes the Levi-Civita connection of (N,h).
J¢ :K¢ — R¢ is called the Jacobi operator [U] and we call HG(¢)
the Hesse operator. They are the self-adjoint operators with respect to
L -metric. This second variation formula may be valid for a smooth mapping
¢:(M,g) > (N,h), where (M,g) and (N,h) are a compact Riemannian

manifold (without boundary) and a Riemannian manifold, respectively [K].



Complex Lagrangian

Let #:(C,gy) = (N,h) be a holomorphic mapping, where (C,g,) is 1-dim.
complex Euclidean space with standard metric 9y and (N,h) isan n-dim.
complex manifold with Hermitian metric h, respectively.
We consider the fozllowing complex Lagrangian of ¢ :
n _
Ls=> Y 0id“0id" hap(#)-G(),
i=1 o, =1
where ¢%=¢c%¢, ¢g%=c%09, (gl,...,gn) is a complex local coordinates
systemon N ,and Ge CZ(N) is a complex valued smooth function on N,

go=Re(@2®d2) =3 dX ®dX. (0= 3547 2 ) +0,6%( )
OX a=1 ol ol

=1
(z =Xt +V=1x%)

5 4% = %gﬂ _ %u“(xl, x2) + ﬁ%v“(xl, x%), i=12, & =1,..,n.
X X X



Complex Lagrangian

We can define the generalized momenta:
i 0Ly i Oly

P, = N =
7oA T a6id”)
Then we have

1=12, y=1...,n.

> (Soip,-o MY, 20, =5§) +araa i,
y,u=1l i=1 5¢

> (Saip,- L = e rad{60)
y,u=1 i=1 a¢

where

grad (VG () = 30 8‘3@)( ), grade(g) = T aG“”’( o),
a1 8¢t act? a1 0" ogt



Complex Lagrangian

and, using the coefficients of torsion-free affine connection of N,
2

S YW Y I7,(#)0i6” a9’ +2 5 r7(#)i4" a¢ﬁ)(—)

i=1 y=1 aﬂ—l a,p=1 o5’

2

=YX+ X T 008" 68" 2 X T (9o 019" %),
i=1y=1 a, =1 a,f=1 0g

Note that the tension field 7¢ of ¢ is Ty= ré )+T§;).
Then the following (a) and (b) are equivalent:

(a) (Euler-Lagrange equations)

OLy 2 - L¢

2 .
a- I - = 0’ - _ O 11 ’

(b) g;>=—grad”e(¢) r§) = grad MG (9)



Complex Hamiltonians

We have the next relationship:

The Euler-Lagrange equations are equivalent to
r4=—grad G(¢),
where ) O
grath(¢) = gradh G(¢)+gradh G(9).

We can define the Hamiltonians as follows:

H(') Za,¢ o' + za,(p “pl - L, =12

Then we have

@ __ 0 (2) _ 0 0
oiH;” =-0, (¢*( )¢( 7)), 9,H, 51h¢(¢*(axl),¢*(axz))-



Conservation laws

From the definitions of Hamiltonians, we see

=1, (¢(5>¢*(—» h(¢( )¢( )} G(9),

2 1 6 _ i i
H¢ _E{h¢(¢* 8x—2)’¢*(6x—2)) h¢(¢*(axl),¢*(axl))}+ G(9).

If ¢ hasthe conformal property such as

h 942 )=0 h 9y 4 (9 y)=h 0y 4 (-9 yy
¢(¢*(8x1) ¢*(8x2)) ¢(¢*(6x1) ¢*(8x1)) ¢(¢*(8x2) ¢*(5X2))

then we have the conservation laws:

O~ @) _
oH g7 =02H " =

HY =H? =G(g).

where



Extended harmonic mapping

Assume that 4:(C, g,) — (N,h) is an extended harmonic, holomorphic
mapping equipped with potential function G with respect to the complex
Lagrangian and ¢ has the conformal property.

If the complex 1-forms dg',....d¢",dg>,....dg" are linearly independent
over the complex number field at each point, where this linearly indepen-
dency does not depend on the way to choose a complex local coordinate
system on N, then the tension field 4 vanishes.
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