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Introduction

How big is a infinite well determined family of geometric objects?
(pseudo-Riemannian metrics, affine connections,...)

To measure an infinite family of real analytic geometric objects
we use

I a finite family of arbitrary functions of k variables,

I a family of arbitrary functions of less variables,

I modulo another family of arbitrary functions of less variables.

The last family of functions corresponds to automorphisms of any
geometric object from the given family.



Introduction

In the real analytic case, the Cauchy-Kowalevski Theorem
is the standard tool.

Egorov, Yu.V., Shubin, M.A.: Foundations of the Classical
Theory of Partial Differential Equations, Springer-Verlag,
Berlin, 1998.

Kowalevsky, S.: Zur theorie der partiellen
differentialgleichungen, J. Reine Angew. Math. 80 (1875)
1–32.

Petrovsky, I.G.: Lectures on Partial Differential Equations,
Dover Publications, Inc., New York, 1991.



An example

How many real analytic Riemannian metrics in dimension 3?

I Every such metric can be put locally into a diagonal form

Eisenhart, L.P.: Fields of parallel vectors in a Riemannian
geometry, Trans. Amer. Math. Soc. 27 (4) (1925)
563–573.

Kowalski, O., Sekizawa, M.: Diagonalization of
three-dimensional pseudo-Riemannian metrics, J. Geom.
Phys. 74 (2013), 251–255.

I All coordinate transformations preserving diagonal form
of the given metric depend on 3 arbitrary functions
of two variables.

I Hence all Riemannian metrics in dimension 3 can be locally
described by 3 arbitrary functions of 3 variables modulo
3 arbitrary functions of 2 variables.



Overview of the results

An immediate question arise if we can determine the number
of other basic geometric objects, namely the affine connections,
in an arbitrary dimension n. We shall be occupied with real
analytic connections in arbitrary dimension n.

I We give an alternative proof of the existence of a system
of pre-semigeodesic coordinates.

I We describe the class of affine connections using
n(n2 − 1) functions of n variables
modulo 2n functions of n − 1 variables.

I We describe the class of torsion-free affine connections using
n(n − 1)(n + 2)/2 functions of n variables
modulo 2n functions of n − 1 variables.

A well known fact from Riemannian geometry is that a Riemannian
connection has symmetric Ricci form.



Overview of the results

I We prove that the class of all affine connections with
skew-symmetric Ricci form depends
on n(2n2 − n − 3)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of connections with symmetric Ricci form depends
on n(2n2 − n − 1)/2 functions of n variables
and n(n − 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of all torsion-free affine connections with
skew-symmetric Ricci form depends
on n(n2 − 3)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo 2n functions of n − 1 variables.

I Class of torsion-free connections with symmetric Ricci form
depends on (n3 + n2 − 4n + 2)/2 functions of n variables
modulo 2n functions of n − 1 variables.



Overview of the results

I All equiaffine connections depends
on n3 − 2n + 1 functions of n variables
modulo a constant and modulo 2n functions of n− 1 variables.

I Equiaffine connections with skew-symmetric Ricci form
depends on (2n3 − n2 − 5n + 2)/2 functions of n variables
and n(n + 1)/2 functions of n − 1 variables,
modulo a constant and modulo 2n functions of n− 1 variables.

I Equiaffine connections with symmetric Ricci form depends
on (2n3 − n2 − 3n + 2)/2 functions of n variables
and n(n − 1)/2 functions of n − 1 variables,
modulo a constant and modulo 2n functions of n− 1 variables.



The Cauchy-Kowalevski Theorem of order 1

Consider a system of PDEs for unknown functions
U1(x1, . . . , xn), . . . ,UN(x1, . . . , xn) on U ⊂ Rn and of the form
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where H i , i = 1, . . . ,N, are real analytic functions of all variables
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The Cauchy-Kowalevski Theorem of order 1

Further, let the functions ϕ1(x2, . . . , xn), . . . , ϕN(x2, . . . , xn)
be real analytic in a neighborhood of (x2

0 , . . . , x
n
0 ) and satisfy

ϕj(x2
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0 ) = aj , j = 1, . . . ,N,(∂ϕ1
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Then the system has a unique solution
(U1(x1, . . . , xn), . . . ,UN(x1, . . . , xn))
which is real analytic around (x1

0 , . . . , x
n
0 ), and satisfies

U i (x1
0 , x

2, . . . , xn) = ϕi (x2, . . . , xn), i = 1, . . . ,N.



The Cauchy-Kowalevski Theorem of order 2

The basic assumptions about the system of PDEs are analogous:
The left-hand sides are the second derivatives

∂2U1

(∂x1)2
, . . . ,

∂2UN

(∂x1)2

and the right-hand sides H1, . . . ,HN involve, as arguments,
the original coordinates, the unknown functions U1, . . . ,UN ,
their first derivatives and their second derivatives except
the derivatives written on the left-hand sides:

H i (x j ,U j ,
∂U j

∂xk
,
∂2U j

∂xk∂x l
),

j = 1, . . . ,N, k = 1, . . . , n, l = 2, . . . , n.



The Cauchy-Kowalevski Theorem of order 2

There exist locally a unique n-tuple (U1, . . . ,UN) of real analytic
functions which is a solution of the new PDE system, and satisfies
the initial conditions

U i (x1
0 , x

2, . . . , xn) = ϕi
0(x2, . . . , xn),

∂U i

∂x1
(x1

0 , x
2, . . . , xn) = ϕi

1(x2, . . . , xn).

The general solution then depends
on 2N arbitrary functions ϕi

0, ϕ
i
1 of n − 1 variables.

See [1], [2] and [3] for the general case and more details.



Transformation of the connection

We work locally with the spaces R[u1, . . . , un], or R[x1, . . . , xn].
We will use the notation u = (u1, . . . , un) and x = (x1, . . . , xn).
For a diffeomorphism f : R[u]→ R[x], we write
xk = f k(ul), or x = x(u) for short.

We start with the standard formula for the transformation
of the connection, which is

Γ̄h
ij(u) =

(
Γγαβ(x(u))

∂f α

∂ui

∂f β

∂uj
+

∂2f γ

∂ui∂uj

)∂f h

∂uγ
. (1)



Transformation of the connection

Lemma

For any affine connection determined by Γh
ij(x), there exist a local

transformation of coordinates determined by x = f (u) such that
the connection in new coordinates satisfies
Γ̄h
11(u) = 0, for h = 1, . . . , n. All such transformations

depend on 2n arbitrary functions of n − 1 variables.

Proof. We consider the equations (1) with Γ̄h
11(u) = 0, which are

0 =
(
Γγαβ(x(u))

∂f α

∂u1

∂f β

∂u1
+

∂2f γ

(∂u1)2
)∂f h

∂uγ
, h = 1, . . . , n.

We multiply these equations by the inverse of the Jacobi matrix
and we obtain the equivalent equations

∂2f γ

(∂u1)2
= −Γγαβ(x(u))

∂f α

∂u1

∂f β

∂u1
, γ = 1, . . . , n.

On the right-hand sides, we have analytic functions depending
on f 1, . . . , f n and their first derivatives.



Transformation of the connection

We choose arbitrary analytic functions
ϕi
λ(u2, . . . , un), for i = 1, . . . , n and λ = 0, 1.

According to the Cauchy-Kowalevski Theorem (of pure order 2),
there exist unique functions f i (u1, . . . , un) such that

f i (u1
0 , u

2, . . . , un) = ϕi
0(u2, . . . , un),

∂f i

∂u1
(u1

0 , u
2, . . . , un) = ϕi

1(u2, . . . , un).

Obviously, determinant of the Jacobi matrix for these functions will
be nonzero for the generic choice of the functions ϕi

λ(u2, . . . , un).
�

Thus, the local existence of pre-semigeodesic coordinates is proved.



Transformation of the connection

Theorem

All affine connections with torsion in dimension n depend locally
on n(n2 − 1) arbitrary functions of n variables
modulo 2n arbitrary functions of (n − 1) variables.

Proof. After the transformation into pre-semigeodesic coordinates,
we obtain n Christoffel symbols equal to zero.
We are left with n3 − n = n(n2 − 1) functions.
The transformations into pre-semigeodesic coordinates
is uniquely determined up to the choice of 2n functions
ϕi
0(u2, . . . , un), ϕi

1(u2, . . . , un) of n − 1 variables. �



The Ricci tensor
We consider Rn[ui ] with the coordinate vector fields Ei = ∂

∂ui
.

We will denote derivatives with respect to ui by the bottom index.
Using the standard definition

R(X ,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X ,Y ]Z

we calculate the curvature operators

R(Ei ,Ej)Ek = (Γαjk)iEα − (Γβik)jEβ + ΓαjkΓγiαEγ − ΓβikΓδjβEδ.

For the Ricci form

Ric(X ,Y ) = trace
[
W 7→ R(W ,X )Y

]
,

we obtain

Ric(Ei ,Ej) =
n∑

k,l=1

[
(Γk

ij)k − (Γk
kj)i + Γl

ijΓ
k
kl − Γl

kjΓ
k
il

]
.



Skew-symmetric Ricci tensor

We analyze the condition for the skew-symmetry of the Ricci form
using previous formulas. Using the symmetry condition Γk

ij = Γk
ji ,

we consider just the Christoffel symbols Γk
ij such that i < j .

We split the skew-symmetry conditions into four cases:

Ric(E1,E1) = 0,
Ric(Ei ,Ei ) = 0, i > 1,

Ric(E1,Ei ) + Ric(Ei ,E1) = 0, i > 1,
Ric(Ei ,Ej) + Ric(Ej ,Ei ) = 0, 1 < i < j ≤ n.

In each formula which follows, we denote by Λ′ij the terms which

involve first derivatives with respect to u2, . . . , un and by Λij the
terms which do not involve any differentiation (and which form a
homogeneous polynomial of degree 2 in Γk

ij).



Skew-symmetric Ricci tensor

Corresponding to the four cases above, we obtain the equations

n∑
k=2

(Γk
k1)1 = Λ′11 + Λ11,

(Γ1
ii )1 = Λ′ii + Λii , i > 1,

(Γ1
i1)1 −

n∑
k=2

(Γk
ki )1 = Λ′1i + Λ1i , i > 1,

(Γ1
ij)1 + (Γ1

ji )1 = Λ′ij + Λij , 1 < i < j ≤ n. (2)



Skew-symmetric Ricci tensor

Theorem

The family of connections with torsion whose Ricci form

is skew-symmetric depends locally, on n(2n2−n−3)
2 functions

of n variables and n(n+1)
2 functions of n − 1 variables, modulo

2n functions of n − 1 variables.

Proof. After the transformation into pre-semigeodesic coordinates,
the family of connections with torsion depends on
q(n) = n(n2 − 1) functions (Christoffel symbols).

I We have p(n) = n(n + 1)/2 conditions for the skew-symmetry
of the Ricci form.

I These conditions involve first derivatives of the Christoffel
symbols and they are written in a suitable way.

I Any Christoffel symbol appears on the left-hand side of the
mentioned equations at most once.



Skew-symmetric Ricci tensor

We select one Christoffel symbol in each of the equations
(to be determined later), for example the following:

I Γ2
21 (1 function),

I Γ1
ii , for i ≥ 1 (n − 1 functions),

I Γ1
ij , for i ≥ j (n(n − 1) functions).

We choose the other q(n)− p(n) = n(2n2 − n − 3)/2 Christoffel
symbols as arbitrary functions.



Skew-symmetric Ricci tensor

The p(n) Christoffel symbols remain undetermined,
just one in each of the equations.
After transporting the arbitrarily chosen functions
to the right-hand side, we obtain a new system of equations
of the form

(Γ2
12)1 = −

n∑
k=3

(Γk
1k)1 + Λ′11 + Λ11,

(Γ1
ii )1 = Λ′ii + Λii , i > 1,

(Γ1
1i )1 = −

n∑
k=2

(Γk
ik)1 + Λ′1i + Λ1i , i > 1,

(Γ1
ij)1 = Λ′ij + Λij , 1 < i < j ≤ n,

where the Christoffel symbols on the right-hand sides
are already fixed.



Skew-symmetric Ricci tensor

We have got a standard system of p(n) equations
for the last p(n) functions
at which the Cauchy-Kowalevski Theorem can be applied.

The general solution depends on p(n) arbitrary functions of n − 1
variables and, because we used pre-semigeodesic coordinates,
this number is to be reduced by 2n functions. �



Symmetric Ricci tensor

We recall the formula for the nondiagonal entries of the Ricci form

Ric(Ei ,Ej) =
n∑

k,l=1

[
(Γk

ij)k − (Γk
kj)i + Γl

ijΓ
k
kl − Γl

kjΓ
k
il

]
. (3)

The Ricci tensor is symmetric if it holds

Ric(Ei ,Ej)− Ric(Ej ,Ei ) = 0, 1 ≤ i < j ≤ n. (4)

We will split the situation into the two cases, i = 1 and i > 1:

−
n∑

k=2

(Γk
kj)1 − (Γ1

j1)1 = Λ′1j + Λ1j , 1 < j ≤ n,

(Γ1
ij)1 − (Γ1

ji )1 = Λ′ij + Λij , 1 < i < j ≤ n. (5)



Symmetric Ricci tensor

Theorem

A family of connections with torsion whose Ricci form is symmetric

depends locally on n(2n2−n−1)
2 functions of n variables and n(n−1)

2
functions of n − 1 variables modulo 2n arbitrary functions of n − 1
variables.

Proof. Using now pre-semigeodesic coordinates, there are just
q(n) = n3 − n = n(n2 − 1) nontrivial Christoffel symbols.

In the system, there are p(n) = n(n − 1)/2 conditions for the
symmetry of the Ricci form.

We let the p(n) Christoffel symbols Γ1
ij , to be determined later and

we fix arbitrarily the q(n)− p(n) = n(2n2 − n − 1)/2 other
Christoffel symbols.

If we transport the chosen Christoffel symbols to the right-hand
sides of the equations, we obtain a standard system for which
the Cauchy-Kowalevski Theorem can be applied.



Final remark
Let the symbol # denote the number of arbitrary functions
of n variables on which a set of connections on an n-dimensional
manifold depends (General connections with torsion, or those with
symmetric Ricci tensor, or those with skew-symmetric Ricci tensor,
respectively).
#Gen(n) = n3 − n,
#Sym(n) = n3 − n(n + 1)/2,
#Skew(n) = n3 − n(n + 3)/2.

I #Gen(n) > #Sym(n) > #Skew(n),

I #Gen(n)−#Sym(n) = O(n2),
#Gen(n)−#Skew(n) = O(n2),

I #Sym(n)−#Skew(n) = n,

I limn→∞(#Sym(n)/#Gen(n)) =
limn→∞(#Skew(n)/#Gen(n)) = 1.

The last, limit rules seem to be like a paradox but this is connected
with the fact that the operation of computing a Ricci tensor from
the Christoffel symbols is a nonlinear operation.
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