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In the last lecture we arrived at the following procedure for producing
many more integrable models of Kepler type:

A simple Euclidean Jordan algebra V

⇓

the conformal Lie algebra co

⇓

the associative algebra T KK

⇓

Universal Kepler Problem

⇓

A generalized Kepler problem via a suitable realization of co
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Recall that the conformal algebra of V has a Poisson realization on TV
in which Xu and Yv can be realized as real-valued function

Xu = 〈x | {πuπ}〉 and Yv = 〈x | v〉

respectively on TV . Since H = 1
2

Xe
Ye
− 1

Ye
, H can be realized as

H =
1
2
〈x | π2〉

r
− 1

r

where r = 〈x | e〉 = 1
rankV tr x .

However,

H is NOT even a real-valued function on TV !

To make sense of H, we need to work on a small subspace of TV .
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Kepler cones
Theorem (G. W. Meng, 2011)
Let k be a positive integer which is at most rankV, and Ck be the set of
rank-k semi-positive elements of V . Then Ck is a manifold. Moreover,
for any x ∈ Ck , 1) TxCk = {x} × ImLx , 2) The map

〈π| 〉 7→ Xe

Ye
=
〈x |π2〉
〈x |e〉

=
〈π | xπ〉

r

is a positive-definite quadratic form on T ∗x Ck .

These quadratic forms in the theorem define a Riemannian metric on
Ck (called the Kepler metric), and shall be denoted by ( , )K .

Claim: The dynamic model with configuration space Ck , Lagrangian
L = 1

2(ẋ , ẋ)2
K + 1

r or Hamiltonian

H =
1
2
||p||2K −

1
r

is a super integrable model of Kepler type.
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2(ẋ , ẋ)2
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Kepler problem and future light-cone
The purpose here is to verify this claim: If V = Γ(3) := R⊕ R3 and
k = 1, then the dynamical model mentioned in the last slide is exactly
the Kepler problem.

In terms of the standard basis vectors ~e0, ~e1, ~e2, ~e3, the Jordan
multiplication can be determined by the following rules: ~e0 is the
identity element, and

~ei~ej = δij~e0

for i , j > 0. The trace tr : V → R is given by the following rules:

tr~e0 = 2, tr~ei = 0.

So the inner product on V is the one such that the standard basis is an
orthonormal basis. Since V has rank two, the determinant of x = xµ~eµ
is

det x =
1
2

((tr x)2 − tr x2) = (x0)2 − (x1)2 − (x2)2 − (x3)2.
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Therefore, the Kepler cone

C1 = {x ∈ V | det x = 0, tr x > 0}
is precisely the future light-cone in the Minkowski space. Since points
on C1 can be parametrized by r ∈ R3

∗ : x(r) = (|r|, r) where |r| is the
length of r, we have (write r = x i~ei )

∂x i = ~ei +
x i

|r|
~e0.

The dual tangent frame E j w.r.t. 〈 | 〉, obtained by solving Eqs
〈E j | ∂x i 〉 = δj

i , is

E j = ~ej −
x j

2|r|2
r +

x j

2|r|
~e0.

Write the Kepler metric ds2
K as gij dx idx j .

Claim: gij = δij , i.e., ds2
K =

∑
i(dx i)2.

Proof. It suffice to prove that g ij = δij . To do that, we note that

xE j = (��
�x j~e0 −

�
�
�x j

2
~e0 +

S
S
S

x j

2|r|
r) + (|r|~ej −

S
S
S

x j

2|r|
r +
�
�
�x j

2
~e0 ) = |r|~ej + x j~e0.
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So, because E i = ~ei − x i

2r2 r + x i

2|r|~e0 and xE j = |r|~ej + x j~e0, we have

g ij =
〈E i | xE j〉
|r|

=
|r|δij − x i x j

2|r| + x i x j

2|r|

|r|
= δij .

Let us write the momentum p as pi dx i , since ds2
K =

∑
i(dx i)2, and

r = 〈x | e〉 = 1
2 tr x = |r|, the hamiltonian of the dynamic model can be

written as
H =

1
2

∑
i

p2
i −

1
|r|
.

That is precisely the hamiltonian of the Kepler problem!

Exercise. Continue the above discussion, please verify that

L~e1,~e2
= L3, L~e2,~e3

= L1, L~e3,~e1
= L2, A~ei

= Ai , A~e0
= 1.

Here Li (resp. Ai ) is the i-th component of the angular momentum
(resp. Lenz vector) in the Kepler problem.
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To be continued

Thanks for your attention!
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