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God always geometrizes — Plato



We have learned that there are Kepler-type integrable models
associated with a simple Euclidean Jordan algebra V , one for each
Kepler cone of V .

We have also learned that the Kepler problem is one of these
integrable models.

Since the Kepler problem has magnetized versions, one naturally
wonders whether these Kepler-type integrable models also have
magnetized versions.

The simple answer is “Yes”.

To know more, we must start with the introduction of Sternberg phase
space [S. Sternberg. Minimal coupling and the symplectic mechanics
of a classical particle in the presence of a Yang-Mills field. Proc Nat.
Acad. Sci. 74 (1977), 5253-5254].
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A technical setup

• G — a compact connected Lie group
• g, g∗ —- the Lie algebra of G and its dual
• P → X — a principal G-bundle over X
• Θ — a fixed principal connection form, i.e., Θ be a g-valued
differential one-form on P which satisfies the following two conditions:

1) Ra−1
∗ Θ = AdaΘ for any a ∈ G, 2) Θ(Xξ) = ξ for any ξ ∈ g.

Here, Ra−1 denotes the right action of a−1 on P, Ada denotes the
adjoint action of a on g, and vector field Xξ denotes the infinitesimal
right action of ξ on P.
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F a Hamiltonian G-space
Ω the symplectic form on F
Φ : F → g∗ the G-equivariant moment map
F → X the associated fiber bundle with fiber F
F ] the pullback of diagram T ∗X → X ← F

I.e., square
F ] → F
↓ ↓

T ∗X → X

is a pullback diagram in the category of smooth manifolds and smooth
maps.

For notational sanity here, we shall use the same notation for both a
differential form (or a map) and its pullback under a fiber bundle
projection map.
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Sternberg Phase Space
Theorem (Sternberg, 1977)
• There is a closed real differential two-form ΩΘ on F which is of the
form Ω− d〈A,Φ〉 under a local trivialization of P → X in which the
connection form Θ is represented by the g-valued differential one-form
A on X.
• The differential two-form ωΘ := ωX + ΩΘ is a symplectic form on F ],
where ωX is the canonical symplectic form on T ∗X, pulled back under
F ] → T ∗X, and ΩΘ is the pullback of ΩΘ under F ] → F .

ΩΘ is the right substitute for Ω when we go from a product bundle
with the product connection to a generic bundle.
If G = U(1), then (F ], ωΘ) = (T ∗X , ωX − qe dA) where qe is the
electric charge of the particle.
In the Hamiltonian formalism, as shown by Sternberg and others,
the Sternberg phase space (F ], ωΘ) is the right substitute for
(T ∗X , ωX ) when particles move in a background gauge field.
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Examples [G. Meng. J. Math. Phys. 54, 052902 (2013)]

• X = R2k+1
∗ or the Kepler cone C1 of the Jordan algebra Γ(2k + 1)

• G = SO(2k)

• P → X is the pullback bundle of SO(2k + 1)→ S2k under the map

X → S2k

r 7→ r
r

(1)

• Θ is the pullback of the canonical connection

Projso(2k)(g−1 dg)

on SO(2k + 1)→ S2k .
• F is a co-adjoint orbit of G which is either {0} or diffeomorphic to

SO(2k)/U(k).

Fact: The conformal Lie algebra of the Jordan algebra Γ(2k + 1) has a
suitable Poisson realization on F ], which yields a magnetized Kepler
problem.
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Remarks

We have seen that there are Kepler-type classical dynamical models
and their magnetized versions associated with each Kepler cone of a
simple euclidean Jordan algebras. Here are some further facts:

The quantum versions of these models are expected to give,
among other things, a concrete geometric realizations for all
unitary highest weight modules of (the universal cover) of the
following real non-compact Lie groups

SO(2,n), Sp(2n,R), SU(n,n), SO∗(4n), E7(−25).

The n-dimensional isotropic harmonic oscillator is (essentially) the
Kepler-type of problem associated with C1 of Hn(R), with the
Fradkin tensor being the (generalized) Lenz-vector.
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Conclusion

There is a rich mathematics hidden behind the embarrassing
simplicity of the Kepler problem, richer than any one can imagine.

I believe that, just as in the past, the Kepler problem will play a
pivot role in the next revolution (i.e., the harmonious marriage of
relativity and quantum theory) of the fundamental physics.

Thanks for your attention!
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