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Introduction

Surface theory in R3 plays a crucial role in differential geometry,
partial differential equations (PDEs), string theory, general theory of
relativity, and biology [Parthasarthy and Viswanathan, 2001] -
[Ou-Yang et. al., 1999].

Soliton equations play a crucial role for the construction of surfaces.

The theory of nonlinear soliton equations was developed in 1960s.

For details of integrable equations one may look [Drazin, 1989],
[Ablowitz and Segur, 1991], and the references therein.
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Introduction

Lax representation of nonlinear PDEs consists of two linear equations
which are called Lax equations

Φx = U Φ, Φt = V Φ, (1)

and their compatibility condition

Ut − Vx + [U, V ] = 0, (2)

where x and t are independent variables. Here U and V are called Lax
pairs.
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Introduction

The relation of 2-surfaces and integrable equations is established by the
use of Lie groups and Lie algebras.

Using this relation, soliton surface theory was first developed by Sym
[Sym, 1982]-[Sym, 1985]. He obtained the immersion function by using
the deformation of Lax equations for integrable equations.

Fokas and Gel’fand [Fokas and Gelfand, 1996] generalized Sym’s result
and find more general immersion function.

Soliton surface technique is an effective method to develop surfaces in
R3 and in M3.
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Introduction

In this method, one mainly uses the deformations of the Lax equations
of the integrable equations [Sym, 1982]-[Gürses and Tek, 2014],

Sine Gordon (SG) equation

Korteweg de Vries (KdV) equation

Modified Korteweg de Vries (mKdV) equation

Nonlinear Schrödinger (NLS) equation

There are many attempts to find new examples of two surfaces.
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Soliton Surface Technique

We follow Fokas and Gel’fand [Fokas and Gelfand, 1996] approach to
develop surfaces using integrable equations.

Lax equation

Φx = U Φ , Φt = V Φ. (3)

Compatibility condition

Ut − Vx + [U, V ] = 0, (4)

Deformation matrices A and B

Let δU = A, δV = B, where A and B satisfy

At −Bx + [A, V ] + [U,B] = 0. (5)

Soliton Surface: Let 〈, 〉 defines an inner product in g.
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Soliton Surface Technique

First fundamental form

(dsI)
2 ≡ gij dxi dxj = 〈A,A〉 dx2 + 2〈A,B〉 dx dt+ 〈B,B〉 dt2,

Second fundamental form

(dsII)
2 ≡ hij dxi dxj = 〈Ax + [A,U ], C〉 dx2

+ 2〈At + [A, V ], C〉 dx dt+ 〈Bt + [B, V ], C〉 dt2,

[A,B] = AB −BA, ||A|| =
√
|〈A,A〉|, and C = [A,B]

||[A,B]|| .

Gaussian and mean curvatures

K = det(g−1 h) , H =
1

2
trace(g−1 h), g = (gij), h = (hij).
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Soliton Surface Technique

Since our aim is finding a class of surfaces which correspond to
integrable equations, we need to find A and B that satisfy the
following equation

At −Bx + [A, V ] + [U,B] = 0. (6)

But in general, solving that equation is not simple. However there are
some deformations which provide A and B directly.
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Soliton Surface Technique

Spectral parameter λ invariance of the equation

A = µ1
∂U

∂λ
, B = µ1

∂V

∂λ
, F = µ1 Φ−1

∂Φ

∂λ
, (7)

That kind of deformation was first used by Sym
[Sym, 1982]-[Sym, 1985].

Gauge symmetries of the Lax equation

A = Mx + [M,U ], B = Mt + [M,V ], F = Φ−1MΦ, (8)

where M is any traceless 2× 2 matrix. [Fokas and Gelfand, 1996],
[Fokas et. al., 2000], [Cieslinski, 1997].
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Soliton Surface Technique

Symmetries of the (integrable) differential equations

A = δU, B = δV, F = Φ−1δΦ, (9)

where δ represents the classical Lie symmetries and (if integrable) the
generalized symmetries of the nonlinear PDE’s
[Fokas and Gelfand, 1996], [Fokas et. al., 2000], [Cieslinski, 1997].

Deformation of parameters of solution of integrable equation

A = µ2 (∂U/∂ki) , B = µ2 (∂V/∂ki) , F = µ2Φ
−1 (∂Φ/∂ki) , (10)

where i = 1, 2 and ki are parameters of the solution u(x, t, k1, k2) of the
PDEs, µ2 is constant. [Gürses and Tek, 2015]
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mKdV Surfaces from Deformation of Parameters

In this section, we obtain the immersions of 2-surfaces in R3.

For this purpose, we use Lie group SU(2) and its Lie algebra su(2) with
basis ej = −i σj , j = 1, 2, 3, where σj denote the usual Pauli sigma
matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (11)

Define an inner product on su(2) as

〈X,Y 〉 = −1

2
trace(XY ), (12)

where X, Y ∈su(2) valued vectors.
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mKdV Surfaces from Deformation of Parameters

In [Tek, 2007], we considered spectral parameter deformation and
combination of spectral and Gauge deformations of mKdV equation.

In this section, we consider the mKdV surfaces arising from
deformations of parameters of the it’s soliton solution.
Let u(x, t) satisfy the mKdV equation

ut = uxxx +
3

2
u2ux. (13)

Substituting the travelling wave ansatz ut − αux = 0 in Eq. (13), we
get

uxx = αu− u3

2
. (14)
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mKdV Surfaces from Deformation of Parameters

Lax pairs U and V are given as

U =
i

2

(
λ −u
−u −λ

)
, (15)

V = − i
2

 1

2
u2 − (α+ αλ+ λ2) (α+ λ)u− iux

(α+ λ)u+ iux −1

2
u2 + (α+ αλ+ λ2)

 ,(16)

and λ is a spectral parameter.

Consider the one soliton solution of mKdV equation [Eq. (14)] as

u = k1 sech ξ1, (17)

where α = k21/4, ξ1 = k1(k
2
1t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.
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mKdV Surfaces from Deformation of Parameters

First we consider mKdV surfaces arising from deformation of
parameter k0.

Proposition

Let u be a travelling wave solution of mKdV equation given by Eq.
(17). The corresponding su(2) valued Lax pairs U and V of the mKdV
equation are given by Eqs. (15) and (16), respectively. su(2) valued
matrices A and B are

A = − iµ
2

(
0 φ0
φ0 0

)
, (18)

B = − iµ
2

(
uφ0 (k21/4 + λ)φ0 − i (φ0)x

(k21/4 + λ)φ0 + i (φ0)x −uφ0

)
,(19)

where A = µ (∂U/∂k0) , B = µ (∂V/∂k0), φ0 = ∂ u/∂k0; k0 is a
parameter of the one soliton solution u, and µ is a constant.
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mKdV Surfaces from Deformation of Parameters

Proposition

Then the surface S, generated by U, V,A and B, has the following first
and second fundamental forms (j, k = 1, 2)

(dsI)
2 ≡ gjk dxj dxk, (20)

(dsII)
2 ≡ hjk dxj dxk, (21)

where

g11 =
1

4
µ2φ20, g12 = g21 =

1

16
µ2φ20(k

2
1 + 4λ), (22)

g22 =
1

64
µ2
(

16 (φ0)
2
x + φ20

[
16u2 + (k21 + 4λ)2

] )
, (23)

h11 = −16 ∆1 λuφ
2
0, (24)

h12 = 4 ∆1φ0

(
4 (φ0)x ux + uφ0

[
2u2 − k21(λ+ 1)− 4λ2

] )
, (25)
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mKdV Surfaces from Deformation of Parameters

Proposition

h22 = −∆1

(
uφ20 (k21 + 4λ)

[
2u2 + 4λ2 + k21(λ+ 1)

]
(26)

+ 4φ0

[
4u(φ0)xt − (φ0)x

(
[k21 + 4λ]ux + 4ut

)]
(27)

+ 4u(φ0)x

[
(φ0)x(k21 + 4λ)− 4(φ0)t

])
∆1 =

µ

32
(

(φ0)2x + u2φ20

)1/2 (28)

and the corresponding Gaussian and mean curvatures are

K =
16λ2

k21µ
2
, H = − 4λ

k1µ
, (29)

where x1 = x, x2 = t.
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mKdV Surfaces from Deformation of Parameters

Another parameter of the one soliton solution of mKdV equation is k1.
Now we give mKdV surfaces arising from k1 parameter deformation.

Proposition

Let u be the soliton solution of mKdV equation and the Lax pairs U
and V are given by Eqs. (15) and (16), respectively. su(2) valued
matrices A and B are

A = − iµ
2

(
0 φ1
φ1 0

)
, (30)

B = − iµ
8

(
4uφ1 − 2k1(λ+ 1) τ − 4i(φ1)x

τ + 4i(φ1)x −4uφ1 + 2k1(λ+ 1)

)
, (31)

where A = µ (∂U/∂k1) , B = µ (∂V/∂k1), τ = 2k1u+ (k21 + 4λ)φ1 and
φ1 = ∂ u/∂k1; k1 is a parameter of the one soliton solution u, and µ is
a constant.
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mKdV Surfaces from Deformation of Parameters

Proposition

Then the surface S, generated by U, V,A and B, has the following first
and second fundamental forms (j, k = 1, 2)

(dsI)
2 ≡ gjk dxj dxk, (32)

(dsII)
2 ≡ hjk dxj dxk, (33)

where

g11 =
1

4
µ2φ21, g12 = g21 =

1

16
µ2φ1

(
2 k1 u+ φ1[k

2
1 + 4λ]

)
, (34)

g22 =
1

64
µ2
(

4
[
k21 + 4φ21

]
u2 + 4 k1 (k21 − 4)uφ1 + 16(φ1)

2
x (35)

+ (k21 + 4λ)2φ21 + 4 k21(λ+ 1)2
)
, (36)

h11 =
1

16
∆2 µ

3 λφ21

(
k1[λ+ 1]− 2uφ1

)
, (37)
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mKdV Surfaces from Deformation of Parameters

Proposition

h12 = h21 =
1

64
∆2 µ

3φ21

(
8 (φ1)xux

+
[
k1(λ+ 1)− 2uφ1

][
2(2λ2 − u2) + k21(λ+ 1)

])
, (38)

h22 =
1

256
∆2 µ

3 φ1

(
8 (φ1)x

{
2 k1 uux + (k21 + 4λ)

[
φ1 ux − u(φ1)x

]
+ 4(uφ1)t

}
+
[
k1(λ+ 1)− 2uφ1

]{
16 (φ1)xt − 4 k1 u(u2 + 2λ)

+ φ1(k
2
1 + 4λ)

(
2[u2 + 2λ2] + k21[λ+ 1]

)})
. (39)
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mKdV Surfaces from Deformation of Parameters

Proposition

The Gaussian and mean curvatures are

K =
1

µ2 η0
(
4 η24 + η23

)2 7∑
l=1

Ql (sech ξ1)
l, (40)

H =
1

4µ η0
(
4 η24 + η23

)3/2 7∑
m=0

Zm (sech ξ1)
m, (41)

where η0, . . . , η4, Q1, . . . , Q7, Z1, . . . , Z6 are functions of x and t.
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The Parameterized Form of the mKdV Surfaces

In this section, we explore the position vector

−→y = (y1(x, t), y2(x, t), y3(x, t)) , (42)

of the mKdV surfaces that we obtain using deformation of parameters.

Consider the one soliton solution of mKdV equation

u = k1 sech ξ1, (43)

where α = k21/4, ξ1 = k1(k
2
1t+ 4x)/8 + k0, and k0 and k1 are arbitrary

constants.
We solve the Lax equations Φx = U Φ and Φt = V Φ using Lax pairs U
and V , and a solution of the mKdV equation.
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The Parameterized Form of the mKdV Surfaces

The components of the 2× 2 matrix Φ are

Φ11 = −∆4

k1

[
A1(2λi− k1 tanh ξ1) · exp

(
i(k21 + 4λ2)t/8

)
· Ξ1

−i k21B1 sech ξ1 · exp
(
− i(k21 + 4λ2)t/8

)
· Ξ2

]
, (44)

Φ12 = −∆4

k1

[
A2(2λi− k1 tanh ξ1) · exp

(
i(k21 + 4λ2)t/8

)
· Ξ1

−i k21B2 sech ξ1 · exp
(
− i(k21 + 4λ2)t/8

)
· Ξ2

]
, (45)

Φ21 = ∆4

[
i A1 sech ξ1 · exp

(
i(k21 + 4λ2)t/8

)
· Ξ1

+B1(2λi+ k1 tanh ξ1) · exp
(
− i(k21 + 4λ2)t/8

)
· Ξ2

]
, (46)

Φ22 = ∆4

[
i A2 sech ξ1 · exp

(
i(k21 + 4λ2)t/8

)
· Ξ1

+B2(2λi+ k1 tanh ξ1) · exp
(
− i(k21 + 4λ2)t/8

)
· Ξ2

]
, (47)
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The Parameterized Form of the mKdV Surfaces

where

Ξ1 = (tanh ξ1 + 1)iλ/2k1(tanh ξ1 − 1)−iλ/2k1 , (48)

Ξ2 = (tanh ξ1 − 1)iλ/2k1(tanh ξ1 + 1)−iλ/2k1 , (49)

∆4 =
√
k1/(k21 + 4λ2). (50)

Here we find the determinant of the matrix Φ as

det(Φ) = (A1B2 −A2B1) 6= 0. (51)
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The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained using
k0 deformation

We find the immersion function F of the mKdV surface obtained using
k0 deformation by using the following equation

F = ν Φ−1
∂Φ

∂k0
+

(
r11 r12
r21 r22

)
, (52)

from which we obtain the position vector.

Using Φ given in the previous slides and choosing
A1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), r11 = r22 = 0,
r12 = −r21 to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).
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The Parameterized Form of the mKdV Surfaces

Hence we obtain a family of surfaces parameterized by

y1 = W6 · sech2(ξ1)
[
W3 · cosh(ξ1) cos(Ω1)

+W4 · sinh(ξ1) sin(Ω1) + 4λW8

(
2W1 cosh(2ξ1) +W7

)]
,(53)

y2 =
1

W5
sech2(ξ1)

[
W10 · sinh(ξ1) cos(Ω1)

−W11 · cosh(ξ1) sin(Ω1) +W9 · cosh2(ξ1)
]
, (54)

y3 = W6 · sech2(ξ1)
[
W13 · cosh(ξ1) cos(Ω1)

−W12 · sinh(ξ1) sin(Ω1) + 2λW2

(
2W1 cosh(2ξ1) +W7

)]
,(55)

where Ω1 =
(
k21(λ+ 1)/4 + λ2

)
t+ λx+ 2λ k0/k1,

ξ1 = k1(k
2
1t+ 4x)/8 + k0 and W1, . . . ,W13 are constants.
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The Parameterized Form of the mKdV Surfaces

Immersion function of the mKdV surface obtained using
k1 deformation

We find the immersion function F of the mKdV surface obtained using
k1 deformation by using the following equation

F = ν Φ−1
∂Φ

∂k1
+

(
r11 r12
r21 r22

)
, (56)

from which we obtain the position vector.

Here we use the solution, Φ, of Lax equations and we choose the
followings

A1 = −k1B2 exp(−λπ/k1), A2 = k1B1 exp(−λπ/k1), (57)

r11 = −r22 =
ν (πλ+ k1)

(
B2

2 −B2
1

)
k21(B2

1 +B2
2)

, (58)

r12 = −r21 k
2
1(B2

1 +B2
2) + 2νB1B2(πλ+ k1)

k21(B2
1 +B2

2)
, (59)
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The Parameterized Form of the mKdV Surfaces

in order to write F in the form F = −i(σ1y1 + σ2y2 + σ3y3).

Hence we obtain a family of surfaces parameterized by

y1 = W14 · sech2(ξ1)
[
W15

(
2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)
sin(Ω1)

+W16 · Ω2 · cosh(ξ1) cos(Ω1)

+W8

(
2Ω3 · cosh(2ξ1) + 2k21λ sinh(2ξ1) + Ω4

)]
, (60)

y2 = W14 · sech2(ξ1)
[
W17

(
2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)
cos(Ω1)

−W18 · Ω2 · cosh(ξ1) sin(Ω1) +W19

(
cosh(2ξ1) + 1

)]
, (61)

y3 = W14 · sech2(ξ1)
[
W20

(
2Ω2 · sinh(ξ1)− (16/3) cosh(ξ1)

)
sin(Ω1)

−W21 · Ω2 · cosh(ξ1) cos(Ω1)

+ (W2/2)
(

2Ω3 · cosh(2ξ1) + 2k21λ · sinh(2ξ1) + Ω4

)]
, (62)
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The Parameterized Form of the mKdV Surfaces

where
Ω2 = t k31 + 4x k1/3, Ω3 =

(
4λ2 + k21

)(
k31[λ+ 1]t− 4λ k0

)
,

Ω4 = tk31

(
4λ2[λ+ 1] + k21[7λ+ 1]

)
/4 + λ

(
k21[2x k1 − k0]− 4λ2 k0

)
and

W14, . . . ,W21 are constants.
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The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces

We obtained the position vector −→y = (y1(x, t), y2(x, t), y3(x, t)) , of the
mKdV surfaces arising from deformation of parameters.

We plot some of these mKdV surfaces for some special values of the
constants.
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The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces from k0
deformation
Example:Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 1.5, k1 = 1.3
and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 1.

Figure : (x, t) ∈ [−15, 15]× [−15, 15]
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The Parameterized Form of the mKdV Surfaces

Example: Taking λ = 1.2, ν = 1, B1 = 1, B2 = 1, k0 = 0.5, k1 = 1.4
and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 2.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]
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The Parameterized Form of the mKdV Surfaces

Example: Taking λ = 0.6, ν = 1, B1 = 1, B2 = 1, k2 = 0.2, k3 = 0.4
and r21 = 1 in Eqs. (53)-(55), we get the surface given in Figure 3.

a) b)

Figure : (a), (b) (x, t) ∈ [−10, 10]× [−10, 10]
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The Parameterized Form of the mKdV Surfaces

Taking λ = 2.7, ν = 1, B1 = 1, B2 = 1, k0 = 0.3, k1 = 1.5 and r21 = 1
in Eqs. (53)-(55), we get the surface given in Figure 4.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]
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The Parameterized Form of the mKdV Surfaces

Graph of Some of the mKdV Surfaces from k1
deformation
Example: Taking λ = 0.15, ν = 1, B1 = 1, B2 = 1, k0 = 0.1,
k1 = −0.5 and r21 = 1 in Eqs. (60)-(62), we get the surface given in
Figure 5.

Figure : (x, t) ∈ [−200, 200]× [−200, 200]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = 0.03, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = −0.1 and r21 = 1
in Eqs. (60)-(62), we get the surface given in Figure 6.

Figure : (x, t) ∈ [−3000, 3000]× [−3000, 3000]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = −0.2, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.7 and r21 = 1
in Eqs. (60)-(62), we get the surface given in Figure 7.

Figure : (x, t) ∈ [−100, 100]× [−100, 100]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = −1.3, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 4 and r21 = 1 in
Eqs. (60)-(62), we get the surface given in Figure 8.

Figure : (x, t) ∈ [−5, 5]× [−5, 5]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 0.6, k1 = 0.7 and r21 = −2
in Eqs. (60)-(62), we get the surface given in Figure 9.

Figure : (x, t) ∈ [−50, 50]× [−50, 50]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = 0, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.7 and r21 = 1 in
Eqs. (60)-(62), we get the surface given in Figure 10.

Figure : (x, t) ∈ [−100, 100]× [−100, 100]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = −0.8, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = −0.2 and r21 = 1
in Eqs. (60)-(62), we get the surface given in Figure 11.

Figure : (x, t) ∈ [−20, 20]× [−20, 20]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = −0.8, ν = 1, B1 = 1, B2 = 1, k0 = 5, k1 = −0.2 and r21 = 1
in Eqs. (60)-(62), we get the surface given in Figure 12.

Figure : (x, t) ∈ [−20, 20]× [−20, 20]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = −0.1, ν = 1, B1 = 1, B2 = 1, k0 = −4, k1 = −0.2 and
r21 = 1 in Eqs. (60)-(62), we get the surface given in Figure 13.

Figure : (x, t) ∈ [−500, 500]× [−500, 500]
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The Parameterized Form of the mKdV Surfaces

Example:
Taking λ = 0.4, ν = 1, B1 = 1, B2 = 1, k0 = 0, k1 = 0.2 and r21 = 1 in
Eqs. (60)-(62), we get the surface given in Figure 14.

Figure : (x, t) ∈ [−80, 80]× [−80, 80]
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Conclusion

• To develop surfaces from integrable equations we used deformation of
parameters of solution of integrable equation

A = µ
∂U

∂ki
, B = µ

∂V

∂ki
.

• Using this method, we construct 2-surfaces from modified
Korteweg-de Vries (mKdV) equation.

• There are two types of deformations of parametrs. The first one gives
2-surfaces on spheres and the second one gives highly complicated
2-surfaces in R3.

• We also give the graph of interesting mKdV surfaces arise from
parametric deformations.
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