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Introduction
Willmore conjecture
Applications of generalized Willmore surfaces
Generalized Willmore energy

∫
(H2+c)dS motivated by Physics

The Willmore energy (as originally defined) is expressed by the
functional

W (S) =

∫
S
H2dS,

where H is the mean curvature of the surface. A Willmore surface
in Euclidean 3-space R3 represents an immersion S that is locally
critical for the Willmore functional.
The corresponding Euler-Lagrange equation is the (classical)
Willmore equation:

∆H + 2H(H2 −K) = 0
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∫
(H2+c)dS motivated by Physics

Famous Willmore conjecture

For every smooth immersed torus M in R3,

W (M) ≥ 2π2

This was proved by Fernando Codá Marques and André Arroja
Neves using min-max theory of minimal surfaces in 2012.
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∫
(H2+c)dS motivated by Physics

Some examples of Willmore-type surfaces and their real life models
include:

- all minimal surfaces/films/membranes in R3

- spheres

- several Clifford-type tori

- Mylar balloon models

- Nanotubes

- Red blood cells (discoids)

- Certain elastic membranes; lipid bilayers (Helfrich surfaces as
generalized Willmore)

Many well-established theoretical works in this field are due
to:

Mladenov, I.; Pulov, V.; Hadzhilazova, M.; Djonjorov, V. at al.
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∫
(H2+c)dS motivated by Physics

Newer models of Willmore-type surfaces in molecular biology
(2014-on):

http://www.aacc.org/resourcecenters/TestKnowledge/

MOM/Pages/molecule2008.aspx GFP (green fluorescent protein)
has a typical beta barrel structure. M. Chalfie, O. Shimomura, and
R. Y. Tsien were awarded the 2008 Nobel Prize in Chemistry on 10
October 2008 for their discovery and development of the GFP.
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∫
(H2+c)dS motivated by Physics

Athukorallage, B. and Toda, M. interpreted beta-barrels as various
rotational generalized Willmore surfaces with no self-intersections. The
beta-barrel is a ”smooth” surface shape that the centers of the beta
”bead-like strands of atoms” would ”lie on”... The following is the GFP
beta barrel: it is a generalized Willmore that resembles a Delaunay profile
with at least 2 inflection points. We proved that profiles of some
beta-barrels can be catenoidal under certain conditions (depending on
ratios between their diameter and height).
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∫
(H2+c)dS motivated by Physics

Generalized Willmore energy
∫
(H2 + c)dS motivated

by Physics

The Generalized Willmore energy functional associated to a surface
M immersed in R3 as:

E(M) =

∫
M

(kH2 + µ) dS, (1)

k = 2kc: double of the usual bending rigidity.
µ : superficial tension.
dS: element of area with respect to the induced metric.

The corresponding Euler-Lagrange equation of (3) is

∆H + 2H(H2 −K − ε) = 0, (2)

where ε = µ
k , and ∆H represents the Laplace-Beltrami operator of

H, corresponding to the naturally induced metric.
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∫
(H2+c)dS motivated by Physics

Theorem 1 (Generalized Willmore energy in
Mathematics)

Given an arbitrary constant k1, the generalized Willmore functional
W̃ (M ; k1) for a surface immersed in M3(0) = R3

W̄ =

∫
M

(H2 + k1) dS, (3)

the Euler-Lagrange equation becomes

∆H + 2H(H2 −K − k1) = 0. (4)
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∫
(H2+c)dS motivated by Physics

Willmore-type energies in spaceforms

Let M3(c) be a 3-dimensional space form of constant curvature c,
namely,

M3(c) =


S3(c) =

{
x ∈ R4|〈x, x〉 = 1

c

}
, if c > 0

R3, if c = 0

H3(c) =

{
x ∈ R4|〈x, x〉H = 1

c , x
0 > 0

}
, if c < 0

where 〈·, ·〉 represents the standard inner product on R4, while

〈x, y〉H = x1y1 + x2y2 + x3y3 − x0y0

represents the standard Lorenzian inner product on the Lorenz
space R4

1.
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∫
(H2+c)dS motivated by Physics

Clifford Torus: - The Hsiang-Lawson conjecture states that any minimally
embedded torus in S3 with the round metric must be a Clifford torus. -
Kilian, Schmidt and Schmitt proved (in 2014) that amongst the
equivariant constant mean curvature tori in S3, the Clifford torus is the
only local minimum of the Willmore energy (other crit.pts.are maxima).

Joint work with E. Aulisa, G. Bornia, T. Paragoda 11 / 42



Part I. Willmore energy in R3 versus Willmore energy in space forms
Part II. Generalized Willmore flow; Dirichlet-Navier BVP; Computational solutions

Introduction
Willmore conjecture
Applications of generalized Willmore surfaces
Generalized Willmore energy

∫
(H2+c)dS motivated by Physics

Other examples of Willmore surfaces in S3: n-lobed tori in S3 (credits
due to D. Ferus and F. Pedit in 1990, graphics by N. Schmitt)
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∫
(H2+c)dS motivated by Physics

Theorem 2 Consider a given smooth immersion r of a surface M ,
with mean curvature H and Gauss curvature K, in the space form
M3(k0) of sectional curvature k0. We consider two possible cases:
case 1): the surface M is closed and no boundary conditions have

to be specified;
case 2): the surface M is not closed. In this case we assume that

both r and ∂r
∂N are known smooth functions on the boundary ∂M .

Joint work with E. Aulisa, G. Bornia, T. Paragoda 13 / 42



Part I. Willmore energy in R3 versus Willmore energy in space forms
Part II. Generalized Willmore flow; Dirichlet-Navier BVP; Computational solutions

Introduction
Willmore conjecture
Applications of generalized Willmore surfaces
Generalized Willmore energy

∫
(H2+c)dS motivated by Physics

Let r be a minimizer of the Willmore functional

W (M) =

∫
M
H2 dS. (5)

Then, the mean curvature H of r must satisfy the equation

∆̃H + 2H(H2 −K + k0) = 0 , (6)

where ∆̃ represents an extrinsic Laplace-Beltrami operator for the
immersion in spaceform M3(k0).
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∫
(H2+c)dS motivated by Physics

Remark: Other choices of boundary conditions can also be
considered involving H and ∂H

∂N , but in this case extra boundary
integrals should be included in functional (5).
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∫
(H2+c)dS motivated by Physics

Proof.

We take the first variation of the Willmore functional
∫∫
M H2dS in

S3(k0), then we have

δ

∫∫
M
H2dS =

∫∫
M

2HδH dS +

∫∫
M
H2δ(dS)

Since δ(dS) = −2φHdS,

δ

∫∫
M
H2 dS =

∫∫
M

2HδH dS +

∫∫
M
H2(−2φH) dS
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∫
(H2+c)dS motivated by Physics

In order to find δH, we consider the normal variation of the
immersion:

r̄(u1, u2, t) = r̄(u1, u2) + tφ(u1, u2)N̄,

φ: smooth real valued function

t: real number such that −ε < t < ε.

We define

ri =
∂r

∂ui
, Ni =

∂N

∂ui
, rij =

∂2r

∂ui∂uj

gij = 〈ri, rj〉 , hij = −〈Ni, rj〉 , hji = gjkhki

Here, the coefficients hji represent the “contracted” second
fundamental form (or shape operator).
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∫
(H2+c)dS motivated by Physics

The first and second fundamental forms on M are respectively

I = gijdu
iduj = 〈dr, dr〉 , II = hijdu

iduj = −〈dN, dr〉

Since

H =
1

2

2∑
i,j

gijhij

δH = δ

(
1

2
gijhij

)
=

1

2
δ(gij)hij +

1

2
gijδ(hij).
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∫
(H2+c)dS motivated by Physics

The Gauss and Weingarten equations in S3(k0) are given by

rij = Γkijrk + hijN− gijk0r

and Ni = −
∑
hjirj respectively

rij = ∂2r
∂ui∂uj

hji = gjkhki

Γkij : classical Christoffel symbols.
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∫
(H2+c)dS motivated by Physics

we obtain

δH =
1

2
2φgikhjkhij +

1

2
gij
(
∇i∇jφ− φhki hjk + gijφk0

)
=

1

2

(
∆φ+ φhikh

k
i + 2k0φ

)
Since hikh

k
i = trace(h2) = 4H2 − 2K + 2k0 we obtain

2δH = ∆φ+ φ(4H2 − 2K + 4k0)

Joint work with E. Aulisa, G. Bornia, T. Paragoda 20 / 42
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∫
(H2+c)dS motivated by Physics

Now let us consider the Green’s second identity:∫
M

(H∆φ − φ∆H) dS =

∮
∂M

(
H
∂φ

∂N
− φ∂H

∂N

)
dΓ,

∂φ
∂N : the directional derivative in the direction of the outward
normal.

If surface M is closed: no boundary and the right-and side of
the above equation is zero.

If the surface M is not closed, we assumed that both r and
∂r
∂N are known smooth functions on the boundary ∂M . In this

case both the test function φ and its normal derivative ∂φ
∂N

vanish on the boundary, therefore also the right-hand side of
equation vanishes.
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∫
(H2+c)dS motivated by Physics

Therefore, one has∫
M
H∆φ dS =

∫
M
φ∆H dS.

Combining the variations δ(dS) ,2δH and using above Green’s
identity, the first variation of the Willmore functional is

δW =

∫
M
φ(∆H + 2H(H2 −K + 2k0)) dS.

Therefore the Euler-Lagrange equation corresponding to the
functional is

∆H + 2H(H2 −K + 2k0) = 0.
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∫
(H2+c)dS motivated by Physics

If instead of the intrinsic Laplace-Beltrami operator we use by
definition the extrinsic Laplace-Beltrami operator), ∆̃ acting on
any smooth function ψ of the given coordinates:

∆̃ψ = gij∇i∇jψ + 2k0ψ = gij(ψij − Γkijψk) + 2k0ψ,

then the Willmore equation can be rewritten in the equivalent form

∆̃H + 2H(H2 −K + k0) = 0.

Joint work with E. Aulisa, G. Bornia, T. Paragoda 23 / 42
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∫
(H2+c)dS motivated by Physics

Theorem

Consider a surface M that is immersed in the ambient space
M3(k0). The generalized Willmore energy functional W̃ (M ; k1)
has the corresponding Euler-Lagrange equation

∆̃H + 2H(H2 −K − k1 + k0) = 0 , (7)

where ∆̃ is the extrinsic Laplace-Beltrami operator of the
immersion in M3(k0).

Proof.

Based on the previous two theorems, the proof is immediate.
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Generalized Willmore flow of graphs
We consider the following geometric evolution equation:

V = ∆H + 2H(H2 −K − ε) on M(t)

where V is the normal velocity of the evolving surfaces M(t).
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Derivation of generalized Willmore flow equation of graphs

By the definition of Laplace Beltrami operator we can express it as
a function of the type

∆ =
1

A
div

((
AI − ∇u⊗∇u

A

)
∇
)

∇u⊗∇u: usual tensor product of ∇u with itself

A =
√

1 + |∇u|2 =
√

1 + u2
x + u2

y.

Joint work with E. Aulisa, G. Bornia, T. Paragoda 26 / 42
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We may write

∆H = ∇ ·
(

1

A

(
I − ∇u⊗∇u

A2

)
∇(AH)

)
−H∇ ·

(
1

A

(
I − ∇u⊗∇u

A2

)
∇A
)

Since 2H = ∇ ·
(
∇u
A

)
for a graph we have

1

A

(
I − ∇u⊗∇u

A2

)
∇A =

1

A

(
∇A− ∆u

A
∇u
)

+ 2H
∇u
A

Joint work with E. Aulisa, G. Bornia, T. Paragoda 27 / 42
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By a calculation we can obtain

∇ ·
(

1

A

(
∇A− ∆u

A
∇u
))

= −2K

Then we have

∆H = ∇ ·
(

1

A

(
I − ∇u⊗∇u

A2

)
∇(AH)

)
+ 2HK −∇ ·

(
H2∇u

A

)
− 2H3
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Comparing the previous equation and the generalized Willmore
flow equation:

ut
A

= V = ∆H + 2H3 − 2HK − 2Hε

we obtain the following fourth oder PDE

ut −A
(
∇ ·
(

1

A

(
I − ∇u⊗∇u

A2

)(
∇(AH)

)
−∇ ·

(
H2∇u
A

)
− ε∇ ·

(
∇u
A

)))
= 0
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By considering W = AH the previous fourth order PDE can be
expressed as a system of second order PDE as follows:

ut = A∇ ·
(
B

A
∇W − W 2

A3
∇u− ε

(
∇u
A

))
in Ω× (0, T )

W =
A

2
∇ ·
(
∇u
A

)
where A =

√
1 + |∇u|2 , B = I − ∇u⊗∇u

A2 and V = ut
A .
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Weak formulation of the Steady state problem

∫
Ω

(
2W

A
ϕu +

∇u
A
· ∇ϕu

)
dΩ = 0,∀ϕu ∈ H1

0 (Ω)∫
Ω

(
− B

A
∇W · ∇ϕv +

(
W 2

A3
+
ε

A

)
∇u · ∇ϕv

)
dΩ = 0,∀ϕv ∈ H1

0 (Ω)

with u(Γ) = 0 and W (Γ) = 0, where Γ is the boundary of Ω.
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For solving the nonlinear problem

F(v) = 0

we use automatic differentiation (AD) to exactly evaluate the
Jacobian matrix in the Newton iteration step

J(vn)wn+1 = −F(vn),

vn+1 = vn + wn+1,

where

J(vn) =
∂F

∂v
(vn).

AD exploits the fact that every computer program, no matter how
complicated, executes a sequence of elementary arithmetic
operations (addition, subtraction, multiplication, division, etc.)
and elementary functions (exp, log, sin, cos, etc.). By applying the
chain rule repeatedly to these operations, derivatives of arbitrary
order can be computed automatically.
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Code modification for AD
C++

#include ‘‘adept.h’’

adept :: Stack & s = FemusInit :: _adeptStack;

vector < adept:: adouble > solu;

vector < adept:: adouble > aResu;

s.new_recording ();

adept :: adouble soluGauss =0;

vector < adept:: adouble > soluGauss_x(dim ,0.);

s.dependent (&aResu [0],nDofs );

s.independent (&solu[0],nDofs );

s.jacobian (&Jac [0]);

s.clear_independents ();

s.clear_dependents ();
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: Generalized Willmore variation
profile with u(Γ) = 0.

: Mean curvature with v(Γ) = 2
.
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Analytical solution for spherical cap

u(x, y) =
√

sec2 θ − (x2 + y2)

W (x, y) = − 1√
sec2 θ − (x2 + y2)

u(Γ) = tan θ and W (Γ) = − 1
tan θ

Γ := {(x, y) ∈ R2 : x2 + y2 = 1}.

Joint work with E. Aulisa, G. Bornia, T. Paragoda 35 / 42
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L2 ERROR and CONVERGENCE ORDER

level Linear Quadratic Bi-quadratic

1 0.06102453786745 0.00083062986070 0.00042310259291
1.870 3.317 3.805

2 0.01669876331327 0.00008337542370 0.00003026532805
1.967 3.393 3.550

3 0.00427147988844 0.00000793617301 0.00000258367131
1.992 3.418 3.246

4 0.00107407384676 0.00000074232788 0.00000027236276
1.998 3.405 3.078

5 0.00026891145988 0.00000007006968 0.00000003225800
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SEMINORM ERROR and CONVERGENCE ORDER

level Linear Quadratic Bi-quadratic

1 0.16877286773614 0.01228182955731 0.00338110240898
0.880 2.207 2.275

2 0.09168463446034 0.00266020047043 0.00069867923079
0.969 2.341 2.095

3 0.04683041645609 0.00052517415525 0.00016355640024
0.992 2.384 2.027

4 0.02354274838120 0.00010061420639 0.00004012133746
0.998 2.373 2.007

5 0.01178764066304 0.00001942679282 0.00000998152245
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: Variation of the profile for the
sphere with u = tan θ on the
boundary and θ = π/3(Mesh
level 1).

: Variation of the profile for the
sphere with u = tan θ on the
boundary and θ = π/3(Mesh
level 3).
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: Mean curvature v = −1/ tan θ
on the boundary and θ = π/3
(Mesh level 1)

: Mean curvature v = −1/ tan θ
on the boundary and θ = π/3
(Mesh level 3).
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Figure: 3D plot of Analytical solutions vs Numerical solutions
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: 1D plot of Analytical solution
vs Numerical solution(Mesh level
0)

: 1D plot of Analytical solution
vs Numerical solution(Mesh level
4)
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Thank you!
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