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e E" semi-Euclidean m-space with the canonical semi-Euclidean
metric tensor of index t given by

(,)= ZdX+ZdX

j=t+1

M — Ef: A (semi-)Riemannian submanifold of Ef”,
V and V: Levi-Civita connections of E™ and M,

h: Second fundemental form of M, ||h||? ‘squared’ norm of h,

A¢: Shape operator along &, D: Normal connection,
R, RP: Curvature tensor and normal curvature tensor of M,

A: Laplace operator of M.
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Basic Equations

Gauss formula VxY = Vx Y + h(X, Y),

Weingarten formula Vx& = —A¢(X) + Dxé&,

e Gauss equation

R(X,Y,Z, W)= (h(Y,Z),h(X,W))— (h(X,2Z),h(Y,W)),
Codazzi equation (Vxh)(Y,Z) = (Vyh)(X, 2),

Ricci equation (RP(X, Y)&,n) = ([A¢, AjlX, Y).
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Section 1:

Gauss map of Lorentzian surfaces in
4-dimensional semi-Euclidean spaces
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Gauss map

Now, let M — E[" be oriented.
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Gauss map

Now, let M — EI" be oriented. Consider a local orthonormal
frame field {e1, e,..., ey} of the tangent space of M.
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Gauss map

Now, let M — EI" be oriented. Consider a local orthonormal
frame field {e1, e,..., ey} of the tangent space of M.
The (tangent) Gauss map of M is defined by

v:M — G(n,m)C A" xEY
p — vip)=(esANexA...ANep)(p)-
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Gauss map

Now, let M — EI" be oriented. Consider a local orthonormal
frame field {e1, e,..., ey} of the tangent space of M.
The (tangent) Gauss map of M is defined by

v:M — G(n,m)C A" xEY
p — vip)=(esANexA...ANep)(p)-

Note that, we have either v(M) C S¥ (1) or v(M) C HY 7 (~1).

r is even r is odd
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Gauss map

Now, let M — EI" be oriented. Consider a local orthonormal
frame field {e1, e,..., ey} of the tangent space of M.
The (tangent) Gauss map of M is defined by

v:M — G(n,m)C A" xEY
p — vip)=(esANexA...ANep)(p)-

Note that, we have either v(M) C S¥ (1) or v(M) C HY 7 (~1).

r is even r is odd

Remark: Codimension 1

If codimension of M is one, then one may put (e; A exA
... A ep) = N to get the definition of classical Gauss map of
(hyper)surfaces, where N is the unit normal vector field of M.
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Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Ef” and v
its Gauss map. Then,
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Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Ef” and v
its Gauss map. Then,

1-type Gauss map
Av=\v+ C)
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Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Ef” and v
its Gauss map. Then,

1-type Gauss map
Av=\v+ C)

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

Av = f(v+ C)

(non-constant) function f
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Pointwise 1-type Gauss map

Let M be an oriented (semi)-Riemannian submanifold of Ef” and v
its Gauss map. Then,

1-type Gauss map
Av=\v+ C)

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

Av = f(v+ C)

(non-constant) function f

A pointwise 1-type Gauss map is said to be
e of the first kind if C =0 (Av = fv),
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Pointwise 1-type Gauss map
Let M be an oriented (semi)-Riemannian submanifold of Ef” and v
its Gauss map. Then,

1-type Gauss map
Av=\v+ C)

Pointwise 1-type Gauss map

(Proper) pointwise 1-type Gauss map if

Av = f(v+ C)

(non-constant) function f

A pointwise 1-type Gauss map is said to be
e of the first kind if C =0 (Av = fv),

e of the second kind if C é Oand f #0



Section 1.2;

Minimal Lorentzian surfaces in 4-dimensional
semi-Euclidean spaces
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.

((f, ) = (R, f2) =0, (A, f) =—1)
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.

(<f17le> = <f27f2> :Oa <f1af2> :_1)
e Mean curvature vector: H = trh = —h(fi, f2),
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.

((h, i) = (f, ) =0, (fi,h)=-1)
e Mean curvature vector: H = trh = —h(fi, f2),
e Gaussian Curvature: K = R(f1, 5, f, f1),
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.

((h, i) = (f, ) =0, (fi,h)=-1)
e Mean curvature vector: H = trh = —h(fi, f2),
e Gaussian Curvature: K = R(f, 2, 2, f1),
o Normal Curvature: KP = RP(f;, f; e3, &),
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Lorentzian surfaces

Let M be a Lorentzian surface in E, r = 1,2.. Consider a local
pseudo-orthonormal frame field fi, f, of the tangent space of M.

((h, i) = (f, ) =0, (fi,h)=-1)
e Mean curvature vector: H = trh = —h(fi, f2),
e Gaussian Curvature: K = R(f, 2, 2, f1),
o Normal Curvature: KP = RP(f;, f; e3, &),
e Laplace operator: A = fifo + fofi = Vgt — Vg h.

Turgay, N. C.



Local coordinates on Lorentzian surfaces

Theorem

3 Let M be a Lorentzian surface in a semi-Euclidean space E{.
Then, there exist local coordinates (s, t) such that the induced
metric is of the form g = —m?(dsdt + dtds).
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Local coordinates on Lorentzian surfaces

Theorem

3 Let M be a Lorentzian surface in a semi-Euclidean space E{.
Then, there exist local coordinates (s, t) such that the induced
metric is of the form g = —m?(dsdt + dtds).Moreover,

e The Levi-Civita connection of M satisfies V.0; = 0,
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Local coordinates on Lorentzian surfaces

Theorem

3 Let M be a Lorentzian surface in a semi-Euclidean space E{.
Then, there exist local coordinates (s, t) such that the induced
metric is of the form g = —m?(dsdt + dtds).Moreover,

e The Levi-Civita connection of M satisfies V.0; = 0,

e Second fundemental form satisfies h(0s, 0;) = —m?H.

?See [Chen, ‘Dependence of the Gauss-Codazzi equations and the Ricci
equation of Lorentz surface'].
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Local coordinates on Lorentzian surfaces

3 Let M be a Lorentzian surface in a semi-Euclidean space E{.
Then, there exist local coordinates (s, t) such that the induced
metric is of the form g = —m?(dsdt + dtds).Moreover,

e The Levi-Civita connection of M satisfies V.0 = 0,

e Second fundemental form satisfies h(0s, 0;) = —m?H.

?See [Chen, ‘Dependence of the Gauss-Codazzi equations and the Ricci
equation of Lorentz surface'].

Corollary

H=0 & Vy,0; =0
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Minimal Lorentzian surfaces

Theorem

@ Every minimal Lorentzian surface in E" is locally congruent to a
translation surface defined by

x(s,t) = as) + B(¢),

where a(s) and §(t) are two null curves.

?See [Y. Fu and Z.-H. Hou, J. Math. Anal. Appl., 371, 25-40 (2010).].
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Section 1.3:

Gauss map of Lorentzian minimal surfaces in
the space I3

See [M., ‘Some classifications of Lorentzian surfaces with finite type

Gauss map in the Minkowski 4-space'(accepted) J. Aust. Math. Soc.].
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Lorentzian Surfaces in

Let M? be a minimal surface in [E5. Consider the local frame field
fi, f; f3, fa. Note that we have h(f1, f») = 0 because of minimality
of M.
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Lorentzian Surfaces in

Let M? be a minimal surface in [E5. Consider the local frame field
fi, f; f3, fa. Note that we have h(f1, f») = 0 because of minimality

of M.
Then its tangent Gauss map v is defined by

v:M — Hg(—l)CEg
p — v(p)=(fAk)Pp)
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Lorentzian Surfaces in

Let M? be a minimal surface in [E5. Consider the local frame field
fi, f; f3, fa. Note that we have h(f1, f») = 0 because of minimality
of M.

Then its tangent Gauss map v is defined by

v:M — Hg(—l)CEg
p — v(p)=(fAk)Pp)

The Gauss map v of M satisfies

Av = 2Kv + 2h(f, f) A h(f, f), (1)
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Lorentzian Surfaces with Av = fv

We have Av = fv < fv =2Kv + 2h(fi. i) A h(f, )
Thus, we have

Av = fvif and only if h(fi, i) A h(fa, f2) = 0. In this case, f = 2K
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Lorentzian Surfaces with Av = fv

We have Av = fv < fv =2Kv + 2h(fi. i) A h(f, )
Thus, we have

Av = fvif and only if h(fi, i) A h(fa, f2) = 0. In this case, f = 2K

or, equivalently,
(Av = fv) & h(fi, i) = Ch(h, f).
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Lorentzian Surfaces with Av = fv

We have Av = fv < fv =2Kv + 2h(fi. i) A h(f, )
Thus, we have

Av = fvif and only if h(fi, i) A h(fa, f2) = 0. In this case, f = 2K

or, equivalently,

(Av = fv) & h(fi, i) = Ch(h, f).

Note that we have 3 cases.
© h(f,f1) = h(f2,f) = 0 (In this case M totally geodesic in E3);
Q@ h(fi,h) =0, h(f, f2) #0;
© h(f, i) = Ch(f, f), ¢ is non-zero:

e h(fi,f;) and h(fz, f2) are casual and linearly dependent;
e h(fi, 1) and h(f, f;) are light-like and linearly dependent.
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Lorentzian Surfaces with Av = fv

h(fi, fi) = 0. In this case, we obtain M is congruent to

x(s, t) = smo + B(t), ()

where 7 is a constant light-like vector and 3 is a null curve in E3.
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Lorentzian Surfaces with Av = fv

h(fi, fi) = 0. In this case, we obtain M is congruent to

x(s, t) = smo + B(t), ()

where 7 is a constant light-like vector and 3 is a null curve in E3.

The hypersurface given in (2) has the following property:
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Lorentzian Surfaces with Av = fv

h(fi, fi) = 0. In this case, we obtain M is congruent to

x(s, t) = smo + B(t), ()

where 7 is a constant light-like vector and 3 is a null curve in E3.

RENEILS

The hypersurface given in (2) has the following property:
It has degenerated relative null space

Np(M) = {X € T,M|h(X,Y) =0, forall Y € T,M}.

Turgay, N. C.



Lorentzian Surfaces with Av = fv

h(fi, i) = Ch(f, f2) are non-vanishing and they not light-like. In
this case, we obtain that M is lying on a hyperplane of E3 by the
following way.
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Lorentzian Surfaces with Av = fv

h(fi, i) = Ch(f, f2) are non-vanishing and they not light-like. In
this case, we obtain that M is lying on a hyperplane of E3 by the
following way.

By the assumption, we see that we may re-define s, t as
e3 = h(0s,0s) = £h(0¢, 0¢) for a unit normal vector field es.
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Lorentzian Surfaces with Av = fv

h(fi, i) = Ch(f, f2) are non-vanishing and they not light-like. In
this case, we obtain that M is lying on a hyperplane of E3 by the
following way.

By the assumption, we see that we may re-define s, t as

e3 = h(0s, 0s) = £h(0¢, 0¢) for a unit normal vector field es.
An instance of Codazzi equation yields that es is parallel. Thus,
De, = 0, where ¢4 is perpendicular to es.
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Lorentzian Surfaces with Av = fv

h(fi, i) = Ch(f, f2) are non-vanishing and they not light-like. In
this case, we obtain that M is lying on a hyperplane of E3 by the
following way.

By the assumption, we see that we may re-define s, t as

e3 = h(0s,0s) = £h(0¢, 0¢) for a unit normal vector field es.
An instance of Codazzi equation yields that es is parallel. Thus,
De, = 0, where ¢4 is perpendicular to e3. Moreover, we have
Ay = 0 because of e3 = h(0Js, 0s) = +h(0s, 0¢). Hence e4 is
constant which completes the proof.

Turgay, N. C.



Lorentzian Surfaces with Av = fv

h(fi, fi), h(f2, ) # 0, h(fi, fi) = Ch(f, f2) and they are light-like.
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Lorentzian Surfaces with Av = fv

h(fi, fi), h(f2, ) # 0, h(fi, fi) = Ch(f, f2) and they are light-like.
In this case, we obtain that M is lying on a degenerated
hyperplane of E} and it is congruent to

x(s, t) = <¢1(5) + ¢a2(t), \f(s + 1), \f(s —t),¢1(s) + ¢2(t)>

for some smooth functions ¢1 and ¢».

Turgay, N. C.



Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s,t) = sno + B(t)
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, 1) = 0);
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, f) = 0);
e A minimal Lorentzian surface lying in a hyperplane E3 of E3
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, i) = 0);

e A minimal Lorentzian surface lying in a hyperplane E3 of E3
(h(f1, f1) is time-like);
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, i) = 0);

e A minimal Lorentzian surface lying in a hyperplane E3 of E3
(h(f1, f1) is time-like);

e A minimal Lorentzian surface lying in a hyperplane Ei’ of E3
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, i) = 0);

e A minimal Lorentzian surface lying in a hyperplane E3 of E3
(h(f1, f1) is time-like);

e A minimal Lorentzian surface lying in a hyperplane Ei’ of E3
(h(f1, f1) is space-like).
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff
o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, i) = 0);
e A minimal Lorentzian surface lying in a hyperplane E3 of E3
(h(f1, f1) is time-like);
e A minimal Lorentzian surface lying in a hyperplane Ei’ of E3
(h(f1, f1) is space-like).

e A minimal Lorentzian surface given by

x(s,t) = (qbl(s) + ¢o(t), \2[(5 +t), ?(s —t),¢1(s) + qﬁz(t))
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Lorentzian minimal surfaces with Av = fv

Let M be a Lorentzian minimal surface in E5. Then, they have
pointwise 1-type Gauss map of the first kind iff

o A surface with degenerated relative null space given
x(s, t) = sno + B(t) ((h(f1, i) = 0);

e A minimal Lorentzian surface lying in a hyperplane E3 of E3
(h(f1, f1) is time-like);

e A minimal Lorentzian surface lying in a hyperplane Ei’ of E3
(h(f1, f1) is space-like).

e A minimal Lorentzian surface given by

x(s,t) = (qbl(s) + ¢o(t), \2[(5 +t), ?(s —t),¢1(s) + qﬁz(t))

(h(fi, f1) is light-like).



Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E3. Then, the following statements are
equivalent.
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Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E3. Then, the following statements are
equivalent.

(i) M has pointwise 1-type Gauss map of the first kind
(Av = fv);
(i) M has harmonic Gauss map (Av = 0);

Turgay, N. C.



Classification Theorem

Hence, we have

Theorem

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E3. Then, the following statements are
equivalent.

(i) M has pointwise 1-type Gauss map of the first kind
(Av = fv);
(i) M has harmonic Gauss map (Av = 0);

(iii) M is congruent to one of following surfaces
x(s, t) =sno + B(t),

x(s, t) = <<Z>1(S) + ¢2(t),

(s + ), (s = 1), ¢1(s) + ¢o(2)

ol
ol




Lorentzian Surfaces with Av = f(v + C)

Proposition

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E3.

Turgay, N. C.



Lorentzian Surfaces with Av = f(v + C)

Proposition

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E5. Then, Av = f(v + C) if and only if

Turgay, N. C.



Lorentzian Surfaces with Av = f(v + C)

Proposition

Let M be a minimal Lorentzian surface properly contained by the
semi-Euclidean space E5. Then, Av = f(v + C) if and only if
h(fi, fi) and h(f, f;) are light-like and linearly independent.

Classification of such surfaces:

x(s,t) = (1(s) + ¢2(t),s + t,s + cosc t + sinc ¢a(t),
¢1(s) —sinc t 4+ cosc ¢o(t))

Turgay, N. C.



Section 2:

Biconservative hypersurfaces in the
Minkowski space E7

See [Fu and M., ‘Complete classification of biconservative hypersurfaces

with diagonalizable shape operator in Minkowski 4-space'(submitted)].
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Biharmonic submanifolds

Let M be an n-dimensional (semi-)Riemannian submanifold of a
(semi-)Euclidean space.

Biharmonic submanifold

M is said to be biharmonic if A%x =0

Turgay, N. C.



Biharmonic submanifolds

Let M be an n-dimensional (semi-)Riemannian submanifold of a
(semi-)Euclidean space.

Biharmonic submanifold
M is said to be biharmonic if A2x =0

The following formula is well-known.

Laplace-Beltrami formula

Ax = enH, where H is the mean curvature vector of M.

|

Turgay, N. C.



Chen’s conjecture

A direct corollary of Laplace-Beltrami formula

If M is minimal, then it is biharmonic.

Turgay, N. C.



Chen’s conjecture

A direct corollary of Laplace-Beltrami formula

If M is minimal, then it is biharmonic.

Thus, the following open problem arises:

Chen’s Biharmonic Conjecture

Let M be a submanifold of an Euclidean space. Then, it is
biharmonic if and only if it is minimal

Turgay, N. C.



Biconservative hypersurfaces

Now, consider a (semi-)Riemannian hypersurface M be of a
(semi-)Euclidean space and let H denote its first mean curvature.

Biconservative hypersurfaces

M is said to be biconservative? if (A%x)T =0

?Some authors have used the term ‘H-Hypersurface’

Turgay, N. C.



Biconservative hypersurfaces

Now, consider a (semi-)Riemannian hypersurface M be of a
(semi-)Euclidean space and let H denote its first mean curvature.

Biconservative hypersurfaces

M is said to be biconservative? if (A%x)T =0

?Some authors have used the term ‘H-Hypersurface’

Note that by a direct computation using Laplace-Beltrami formula,
we have

M is biconservative if and only if S(VH) = cHVH, where c is a
‘constant’

Turgay, N. C.



Hypersurfaces in E7

It is well-known that the shape operator of a hypersurface in E
takes one of the following 4 forms.

kk 0 0 kk 1 0
Casel. S = 0 k 0 , Casell. S = 0 kK O ,
0 0 ks 0 0 ks
ki 0 0 kk —-v O
Case lll. § = 0 k 1 , CaselV.S= v ki 1 ,
-1 0 Kk -1 0 k3

for some smooth functions ki, ko, k3, kg and v.

Turgay, N. C.



Biconservative hypersurfaces in E}

We have obtained the following families of biconservative
hypersurfaces with diagonalizable shape operator.

Two distinct principal curvatures

e xi(s,t,u) = (fi(s),scos tsinu,ssintsinu,scos u);
e xo(s, t,u) = (ssinhusin t, scoshusin t,scos t, f(s));
e x3(s, t,u) = (scosht, ssinht sin u, sinht cos u, 3(s));
o x4(s,t,u) =

(3s(t? + v?) + s+ fa(s), st, su, 3s(t? + u?) + fa(s)).

Turgay, N. C.



Biconservative hypersurfaces in E}

Zero Gauss-Kronecker Curvature

e A generalized cylinder I\/lg X IE% where M is a biconservative
surface in E3;

e A generalized cylinder I\/Ig x E! where M is a biconservative
Riemannian surface in E%;

e A generalized cylinder M? x E1, where M is a biconservative
Lorentzian surface in E3.

Turgay, N. C.



Biconservative hypersurfaces in E}

Three distinct principal curvatures

e xi(s,t,u) = (scosht, ssinht, fi(s) cos u, fi(s) sin u);
e xa(s, t,u) = (ssinht, scosht, f(s) cos u, f(s) sin u);

e A hypersurface in Ef given by
1
x3(s, t,u) = <2s(t2 + u?) + au® + s + ¢(s), st, (s + 2a)u,

%s(t2 +u?) +av” + gb(s)) , a#0.
(3)

Turgay, N. C.



Section 3:

Other problems

Turgay, N. C.



Biconservative hypersurfaces

Problem

Classify all biconservative hypersurfaces in E} with
non-diagonalizable shape operator.
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Biconservative hypersurfaces

Problem

Classify all biconservative hypersurfaces in E} with
non-diagonalizable shape operator.

In other words, classify all hypersurfaces with the shape operator

9H
o T

S=( o -2 o
0 0 3H/2
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A family of hypersurfaces

Consider the hypersurface given by
st
x(s.8) = (DL 43 Frs+o(s). s

for a smooth function ¢, where t = (t1, to, ..., t,) and
a=(a,az,...,an).
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A family of hypersurfaces

Consider the hypersurface given by
s|t]?

xs. )= (L 45 T+s+a(s), s

for a smooth function ¢, where t = (t1, to, ..., t,) and

a=(a,az,...,an).
The shape operator of this hypersurface is

S = diag(ki(s), ka(s), . - ., kn(s)).
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Hypersurfaces with vanishing Gauss-Kronecker curvature

Let a(w) be a smooth, regular, space-like curve in S3(1) C Ef and
A(w), B(w) form an orthogonal frame field for the normal space
of a in S3(1).
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Hypersurfaces with vanishing Gauss-Kronecker curvature

Let a(w) be a smooth, regular, space-like curve in S3(1) C Ef and
A(w), B(w) form an orthogonal frame field for the normal space
of a in S3(1).

Consider the hypersurface in E} given by

x(s,v,w) =sa(w) + ¢ (cos %A(W) + sin %B(W)) .
The shape operator of this hypersurface is

S = diag(0, —1/c, k3(s, v, w)).
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