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1. Geodesic mapping theory for Vn → V̄n of class C 1

Assume the (pseudo-) Riemannian manifolds Vn = (M, g ,∇) and
V̄n = (M̄, ḡ , ∇̄). Here Vn, V̄n ∈ C 1, i.e. g , ḡ ∈ C 1 which means
that their components gij , ḡij ∈ C 1.

Definition

A diffeomorphism f : Vn → V̄n is called a geodesic mapping of Vn
onto V̄n if f maps any geodesic in Vn onto a geodesic in V̄n.

A manifold Vn admits a geodesic mapping onto V̄n if and only if
the Levi-Civita equations

(1) ∇̄XY = ∇XY + ψ(X )Y + ψ(Y )X

hold for any tangent fields X ,Y and where ψ is a differential form.
If ψ ≡ 0 than f is affine or trivially geodesic.
In local form: Γ̄h

ij = Γh
ij + ψiδ

h
j + ψjδ

h
i ,

where Γh
ij(Γ̄h

ij) are the Christoffel symbols of Vn and V̄n,
ψi are components of ψ and δhi is the Kronecker delta.
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Equations (1) are equivalent to the following equations

(2) ḡij ,k = 2ψk ḡij + ψi ḡjk + ψj ḡik

where “ , ” denotes the covariant derivative on Vn. It is known that

ψi = ∂iΨ, Ψ =
1

2(n + 1)
ln
∣∣∣∣det ḡdet g

∣∣∣∣ , ∂i = ∂/∂x i .

Sinyukov proved that the Levi-Civita equations are equivalent to

(3) aij ,k = λigjk + λjgik ,

where

(4) (a) aij = e 2Ψḡαβgαigβj ; (b) λi = − e 2Ψḡαβgβiψα.

From (3) follows λi = ∂iλ = ∂i (
1
2 aαβg

αβ). On the other hand

(5) ḡij = e 2Ψg̃ij , Ψ =
1
2
ln
∣∣∣∣det g̃det g

∣∣∣∣ , ‖g̃ij‖ = ‖g iαg jβaαβ‖−1.

The above formulas are the criterion for geodesic mappings
Vn → V̄n globally as well as locally.
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2.Geodesic mapping theory for Vn → V̄n of class C 2

Let Vn and V̄n ∈ C 2, then for geodesic mappings Vn → V̄n the
Riemann and the Ricci tensors transform in this way
(6)
(a) R̄h

ijk = Rh
ijk + δhkψij − δhj ψik ; (b) R̄ij = Rij − (n − 1)ψij ,

where ψij = ψi ,j − ψiψj ,
and the Weyl tensor of projective curvature, which is defined in the
following form

W h
ijk = Rh

ijk +
1

n − 1

(
δhkRij − δhj Rik

)
,

is invariant.
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The integrability conditions of the Sinyukov equations (3)

have the following form

(7) aiαRαjkl + ajαRαikl = gikλj ,l + gjkλi ,l − gilλj ,k − gjlλi ,k .

After contraction with g jk we get

(8) nλi ,l = µgil − aiαRαl + aαβRαil
β

where Rαil
β = gβkRαilk ; Rαl = gαjRjl and µ = λα,βgαβ .

Josef Mikeš and Irena Hinterleitner Geodesic Mappings and Einstein Spaces



3. Geodesic mapping between Vn ∈ C r (r > 2) and V̄n ∈ C 1

Theorem 1

If Vn ∈ C r (r > 2) admits geodesic mappings onto V̄n ∈ C 1, then
V̄n ∈ C r .

This Theorem is more strong than following theorem

Theorem 2

If Vn ∈ C r (r > 2) admits geodesic mappings onto V̄n ∈ C 2, then
V̄n ∈ C r .

Lemma 1

Let λh ∈ C 1 be a vector field and % a function.
If ∂iλ

h − % δhi ∈ C 1 then λh ∈ C 2 and % ∈ C 1.
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Sketch of the proof:

The condition ∂iλ
h− % δhi ∈ C 1 can be written in the following form

(9) ∂iλ
h − %δhi = f h

i (x),

where f h
i (x) are functions of class C 1. Evidently, % ∈ C 0. For fixed

but arbitrary indices h 6= i we integrate (9) with respect to dx i :

λh = Λh +

∫ x i

x i
o

f h
i (x1, . . . , x i−1, t, x i+1, . . . , xn) dt,

where Λh is a function, which does not depend on x i .
Because of the existence of the partial derivatives of the functions
λh and the above integrals, also the derivatives ∂hΛh exist.
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Then we can write (9) for h = i :

(10) % = −f h
h +∂hΛh +

∫ x i

x i
o

∂hf h
i (x1, . . . , x i−1, t, x i+1, . . . , xn) dt.

Because the derivative with respect to x i of the right-hand side of
(10) exists, the derivative of the function % exists, too. Obviously
∂i% = ∂hf h

i − ∂i f h
h , therefore % ∈ C 1 and from (9) follows λh ∈ C 2.
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In a similar way we can prove the following: if λh ∈ C r (r ≥ 1) and
∂iλ

h − %δhi ∈ C r then λh ∈ C r+1 and % ∈ C r .

Lemma 2

If Vn∈C 3 admits a geodesic mapping onto V̄n∈C 2, then V̄n∈C 3.

Skach of the proof

In this case Sinyukov’s equations (3) and (8) hold. According to
the assumptions gij ∈ C 3 and ḡij ∈ C 2. By a simple check-up we
find Ψ ∈ C 2, ψi ∈ C 1, aij ∈ C 2, λi ∈ C 1 and
Rh

ijk ,R
h
ij
k ,Rij ,Rh

i ∈ C 1.
From the above-mentioned conditions we easily convince ourselves
that we can write equation (8) in the form (9), where
λh = ghαλα ∈ C 1, % = µ/n and
f h
i = (−λαΓh

αi − ghγaαγRαi + ghγaαβRαiγ
β)/n ∈ C 1.

From Lemma 1 follows that λh ∈ C 2, % ∈ C 1, and evidently
λi ∈ C 2. Differentiating (3) twice we convince ourselves that
aij ∈ C 3. From this and formula (5) follows that also Ψ ∈ C 3 and
ḡij ∈ C 3.
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Further we notice that for geodesic mappings between Vn and V̄n
of class C 3 holds the third set of Sinyukov equations:

(11) (n − 1)µ,k = 2(n + 1)λαRαk + aαβ(2Rαk,
β − Rαβ,k).

If Vn ∈ C r and V̄n ∈ C 2, then by Lemma 2, V̄n ∈ C 3 and (11)
hold. Because Sinyukov’s system (3), (8) and (11) is closed, we
can differentiate equations (3) (r − 1) times. So we convince
ourselves that aij ∈ C r , and also ḡij ∈ C r (≡ V̄n ∈ C r ).

Remark
Because for holomorphically projective mappings of Kähler (and
also hyperbolic and parabolic Kähler) spaces hold equations
analogical to (3) and (8), from Lemma 1 follows an analog to
Theorem 1 for these mappings.
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4.On geodesic mappings of Einstein spaces

Einstein spaces Vn are characterized by the condition

Ric = const · g ,

so Vn∈ C 2 would be sufficient.

We remark that spaces of constant curvature are Einstein spaces
and Einstein spaces V3 are always have constant curvature.
Therefore many properties of Einstein spaces appear when

V ∈ C 3 and n > 3.

Moreover, it is known (D.M. DeTurck and J.L. Kazdan) that an
Einstein space Vn belongs to Cω, i.e., for all points of Vn, there
exists local coordinate system x for which gij(x) ∈ Cω (analytic
coordinate system).
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It is known that Riemannian spaces of constant curvature form a
closed class with respect to geodesic mappings (Beltrami theorem).

Theorem 3
If the Einstein space Vn admits a nontrivial geodesic mapping onto
a (pseudo-) Riemannian space V̄n, then V̄n is an Einstein space.
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In 1978 in the PhD thesis Mikeš proved that above Theorem holds
locally for Vn ∈ C 3 and V̄n ∈ C 3.
From Theorem 2 this Theorem holds for Vn ∈ C 3 and V̄n ∈ C 1.
Moreover from results by DeTurck this Theorem holds GLOBALLY
and exists common coordinate system in which Vn ∈ Cω and
V̄n ∈ Cω.
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Thank you for your attention!
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