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1. Introduction

We study the general dependence of holomorphically projective
mappings of classical, pseudo- and hyperbolic Kihler manifolds
(shortly e-Kahler) in dependence on the smoothness class of the
metric.

We present well known facts, which were proved by Domashev,
Kurbatova, Mikes, Prvanovi¢, Otsuki, Tashiro etc.

In these results no details about the smoothness class of the metric
were stressed. They were formulated “for sufficiently smooth”
geometric objects.
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2. Kahler manifolds

Definition

An n-dimensional (pseudo-) Riemannian manifold (M, g) is
called an e-Kdhler manifold K, if beside the metric tensor g, a
tensor field F (# Id) of type (1,1) is given on the manifold M,,
called a structure F, such that the following conditions hold:

(1) F>=eld; g(X,FX)=0; VF=0,

where e = £1, X is an arbitrary vector of TM,, and V denotes
the covariant derivative in K,,.
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o If e=—1, K, is a (pseudo-) Kahler space (also elliptic Kahler
space) and F is a complex structure.

As A-spaces, these spaces were first considered by
P.A. Shirokov. Independently they were studied by E. K&hler .

o If e=+1, K, is a hyperbolic Kahler space (also para Kahler
space) and F is a product structure. The spaces K, were
considered by P.K. Rashevskij.

The e-Kahler spaces introduced here are called shortly “Kahler”. By
our definition we want to give a unified notation for all clases.

4
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3. Holomorphically projective mapping theory for K, — K,
of class C?

Assume the e-Kahler manifolds K, = (M, g, F) and )
Kn = (M, g, F) with metrics g and g, structures £ and F,
Levi-Civita connections V and V, respectively.

Here K,,, K, € C!, i.e. g, g € C! which means that their
components gj;, gij € cl.
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Definition

A curve £ in K, which is given by the equation

¢=1((t), A=dl/dt (#0),t € |, where t is a parameter is called
analytically planar, if under the parallel translation along the
curve, the tangent vector A\ belongs to the two-dimensional
distribution D = Span{\, FA} generated by A and its conjugate
F ), that is, it satisfies

ViX = a(t)A + b(t)FA,

where a(t) and b(t) are some functions of the parameter t.

e Particularly, in the case b(t) = 0, an analytically planar curve
is a geodesic.
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Definition

A diffeomorphism f: K, — K, is called a holomorphically
projective mapping of K, onto K, if f maps any analytically
planar curve in K, onto an analytically planar curve in Kj,.

Assume a holomorphically projective mapping f: K, — K.

Since f is a diffeomorphism, we can suppose local coordinate charts
on M or M, respectively, such that locally, f: K, - K, maps
points onto points with the same coordinates, and M = M.
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A manifold K, admits a holomorphically projective mapping onto
K, if and only if the following equations:
2)

VxY =VxY +9(X)Y + (V)X + e (FX)FY + ey (FY)FX

hold for any tangent fields X, Y and where 1) is a differential form.
e If 4 = 0 than f is affine or trivially holomorphically projective.
Beside these facts it was proved that F = +F: for this reason we
can suppose that F = F. In local form:

Th = T8+ 0i0] + 407 + eyl + eysof,

where I'Z- and I_'Z- are the Christoffel symbols of K, and K, v;, F"

1
are components of ¢, F and 5;’ is the Kronecker delta, ;7 = 9o F{,
§h — Fh
i ! ) . . . . . .
Here and in the following we will use the conjugation operation of
indices in the way
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Equations (2) are equivalent to the following equations

(3)
Vz&(X,Y) =24(2)g(X,Y) +4(X)g(Y, Z2) + 4(Y)&(X, 2)

—eyp(FX)g(FY,Z) — e (FY)g(FX, Z).
In local form:

8ij.k = 2VBij + Vigjk + V8ik — eV — eV,

where “,” denotes the covariant derivative on K,,. It is known that
1 detg ;
|p— '\IJ \|J pr— p— I‘
v = OV, O n detg |’ 0i = 0/0x
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Domashev, Kurbatova and Mikes proved that equations (2) and (3)
are equivalent to

Vza(X,Y)=XX)g(Y,Z)+ ANY)g(X,Z)—

) eX(FX)g(FY,Z) — e\(FY)g(FX, Z).
In local form:

ajj,k = Nigjk + Aj8ik — eAiBji — A&k
where

(5) (a) aj = e*Yg*gaigs;i  (b) A\i=—e>g"ggitha.

From (4) follows \; = 9;A = 0;(} aa3g*”). On the other hand:

det g

1
2V ~ w I
detg

(6) &j=e""&j 5In

” 18] = llg™*g"P anp| "

The above formulas are the criterion for holomorphically projective
mappings K, — K, globally as well as locally.
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4. Holomorphically projective mapping theory for K, — K,

Siiclass C2

Let K, and K,, € C? be e-Kahler manifolds,_then for
holomorphically projective mappings K, — K, the Riemann and the
Ricci tensors transform in this way

(a) R = Rl + 00y — /i — edfipiz + eéji’zp,-,; + 2e80;z;
(b) Ry =Ry —(n+2)¢y,

where ¥ = ¥ — ity + Py (Y = bji = —etyy).
The tensor of holomorphically projective curvature, which is defined
in the following form
(8) .
h h h h

Pl =R+ — (5k j — O] Rix — e0ERy + ed? Ry + 232 Rz )
is invariant with respect to holomorphically projective mappings, i.e.

h _ ph
'Dl_/k Puk
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The integrability conditions

of equations (4)
ajjk = Nigjk + Nigik — eNigik — €Ak
where

2\Ug_045

(a) aj=-¢e gaigsi (b)) Ni=—eVg*Pgsi,.

have the following form
(9)
aiaRijy + ajaRiyy = &ikAjt + &jkAi i — BitAjk — &jiAik

— €87 Aj | — €8t e8iAT k T €87 AT k-

We make the remark that the formulas introduced above, (7), (8)
and (9), are not valid when K, & C? or K, & C2.
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After contraction with g/* we get:
3ia Ry + aasRE” = pgic + eXig — (n— Dk,
where R = gPkR? Ry = go‘jRj/ and pu = )\aﬁgo‘ﬁ.

We contract this formula with F F,f, and from the properties of the
Riemann and the Ricci tensors of K, we obtain

(10) )‘IT,I? = *6)\,‘7;(,
and
(11) NNk = 18k — 3iaRY — aasR¥ 1" .

Because \; is a gradient-like covector, from equation (11) follows
a,'aqu = ajaRf‘.

From (10) follows that the vector field A7 (= Ao F*) is a Killing
vector field, i.e. A\;; +A;; =0,
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5. Holomorphically projective mappings between

EESNC(r > 2) and K, € C?

We proof the following theorem

IfKy, € Cr (r>2) admits holomorphically projective mappings
onto K, € C?, then K, € C".

The proof of this theorem follows from the following lemmas.

Let A" € C! be a vector field and o a function. If

(12) ON'— goh e C!

then A" € C? and p € C1.

In a similar way we can prove the following: if \" € C" (r > 1) and
0N — 06 € C" then AP € C™ and p € C".



If K, C3 admits a holomorphically projective mapping onto
K, € C?, then K,e C3

| A\

Sketch of the proof:

In this case equations (4) and (11) hold. According to the
assumptions g; € C3 and g; € C2. By a simple check-up we find
Ve yeCla;eC? e and R, R Ry, Rl € CL.
From the above-mentioned conditions we easily convince ourselves
that we can write equation (11) in the form (12), where

M =gha), € Cl, o= p/n and

= L (I, — Fa, RE < @V, 005, ) € O
From Lemma 1 follows that \" € C2?, o€ Ct, and evidently
A\ € C2. Differentiating (4) twice we convince ourselves that
a;j € C3. From this and formula (6) follows that also W € C* and
gij € Cs.

v
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For holomorphically projective mappings between e-Kahler
manifolds K, and K, of class C3 holds the following third set of
equations:

(13) L = —2XaRE.

e If K, € C" and K,, € C?, then by Lemma 2, K,, € C3 and (13)
holds.
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Because the system (4)
ajjk = Nigjk + Nigik — eAgik — eAi8ik

where (a) a; = e?Yg8%g.igs;i  (b) A= —e2Vg*Pgsita,

(11) ik = pgik + aiaRE + aasRYi”

and (13)
Mok = _2>\04RI€v

is closed, we can differentiate equations (4) (r — 1) times. So we
convince ourselves that a;; € C", and also gjj € C" (= K, € C").

Moreover, in this case from equation (13) follows that the function
mE G
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Thank you for your attention!
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