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Classical Dunford-Schwartz pointwise ergodic theorem

Definition

Let (Ω, µ) be a measure space. A linear operator T on
L1(Ω) + L∞(Ω) is called a Dunford-Schwartz operator if

‖T (f )‖∞ ≤ ‖f ‖∞ ∀ f ∈ L∞(Ω) and ‖T (f )‖1 ≤ ‖f ‖1 ∀ f ∈ L1(Ω).

Theorem

Let T : L1(Ω) + L∞(Ω)→ L1(Ω) + L∞(Ω) be a Dunford-Schwartz
operator, and let f ∈ Lp(Ω), 1 ≤ p <∞. Then the Cesáro
averages

An(T , f ) =
1

n

n−1∑
k=0

T k(f ), n = 1, 2, . . .

converge µ−almost everywhere to some f̂ ∈ Lp(Ω).



Classical Dunford-Schwartz pointwise ergodic theorem

Definition

Let (Ω, µ) be a measure space. A linear operator T on
L1(Ω) + L∞(Ω) is called a Dunford-Schwartz operator if

‖T (f )‖∞ ≤ ‖f ‖∞ ∀ f ∈ L∞(Ω) and ‖T (f )‖1 ≤ ‖f ‖1 ∀ f ∈ L1(Ω).

Theorem

Let T : L1(Ω) + L∞(Ω)→ L1(Ω) + L∞(Ω) be a Dunford-Schwartz
operator, and let f ∈ Lp(Ω), 1 ≤ p <∞. Then the Cesáro
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Overview

The first individual ergodic theorem for a semifinite von Neumann
algebra (M, τ) appeared in a seminal paper of Yeadon (J. London
Math. Soc., 1977).

In that paper, it was proved that the Cesáro averages

An(T , x) =
1

n

n−1∑
k=0

T k(x), n = 1, 2, . . . (1)

generated by a positive Dunford-Schwartz operator T defined on
the space L1(M, τ) +M converge bilaterally almost uniform
(b.a.u.) (in Egorov’s sence) for every x ∈ L1(M, τ).
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Overview

There were two immediate outstanding problems associated with
the result:

(P1) Can b.a.u. convergence ‖e(An(T , x)− x̂)e‖∞ → 0, where e
is a ”big” projection in M, be replaced by generally stronger
almost uniform (a.u.) convergence: ‖(An(T , x)− x̂)e‖∞ → 0?

(P2) If the trace τ is infinite, how far beyond L1(M, τ) inside
L1(M, τ) +M can one go for this convergence to hold?

These were partially answered by Junge and Xu (J. AMS, 2007),
where it was shown that for 1 < p < 2 we have b.a.u. convergence
and if 2 ≤ p <∞ the averages converge a.u.

Since then the argument of Junge and Xu has been simplified but
no major progress had been attained in answering these questions.
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Overview

The main goal of this talk is to present a solution to (P1)+(P2):

There is a.u. convergence for all 1 ≤ p <∞ and if τ is infinite and
M is non-atomic, a.u. convergence of egrodic averages holds for
x ∈ L1(M, τ) +M if and only if x ∈ Rµ, the latter extending far
beyond the family of noncommutative Lp−spaces, 1 ≤ p <∞.

Besides, we establish a.u. convergence in Rµ for a variety of
noncommutative individual ergodic theorems, some of which new
and some previously known to hold only for b.a.u. convergence.
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Preliminaries

Let M be a semifinite von Neumann algebra equipped with a
faithful normal semifinite trace τ . Let P(M) be the lattice of
projections in M. If 1 is the identity of M and e ∈ P(M), we
write e⊥ = 1− e.

Denote by L0 = L0(M, τ) the ∗−algebra of τ−measurable
operators affiliated with M endowed with the measure topology.

If 1 ≤ p <∞, then the noncommutative Lp−space associated with
(M, τ) is defined as

Lp = Lp(M, τ) =
{
x ∈ L0 : ‖x‖p = (τ(|x |p))1/p <∞

}
,

where |x | = (x∗x)1/2, the absolute value of x . Naturally,
L∞(M) =M, equipped with the uniform norm ‖ · ‖∞.
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Preliminaries

Let x ∈ L0, and let {eλ}λ≥0 be the spectral family of projections
for the absolute value |x | of x . If t > 0, then a non-increasing
rearrangement of x is defined as

µt(x) = inf{λ > 0 : τ(e⊥λ ) ≤ t}.

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called symmetric if conditions

x ∈ E , y ∈ L0, µt(y) ≤ µt(x) for all t > 0

imply that y ∈ E and ‖y‖E ≤ ‖x‖E .

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called fully symmetric if

x ∈ E , y ∈ L0,

s∫
0

µt(y)dt ≤
s∫

0

µt(x)dt for all s > 0

entail that y ∈ E and ‖y‖E ≤ ‖x‖E .



Preliminaries

Let x ∈ L0, and let {eλ}λ≥0 be the spectral family of projections
for the absolute value |x | of x . If t > 0, then a non-increasing
rearrangement of x is defined as

µt(x) = inf{λ > 0 : τ(e⊥λ ) ≤ t}.

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called symmetric if conditions

x ∈ E , y ∈ L0, µt(y) ≤ µt(x) for all t > 0

imply that y ∈ E and ‖y‖E ≤ ‖x‖E .

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called fully symmetric if

x ∈ E , y ∈ L0,

s∫
0

µt(y)dt ≤
s∫

0

µt(x)dt for all s > 0

entail that y ∈ E and ‖y‖E ≤ ‖x‖E .



Preliminaries

Let x ∈ L0, and let {eλ}λ≥0 be the spectral family of projections
for the absolute value |x | of x . If t > 0, then a non-increasing
rearrangement of x is defined as

µt(x) = inf{λ > 0 : τ(e⊥λ ) ≤ t}.

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called symmetric if conditions

x ∈ E , y ∈ L0, µt(y) ≤ µt(x) for all t > 0

imply that y ∈ E and ‖y‖E ≤ ‖x‖E .

A Banach space (E , ‖ · ‖E ) ⊂ L0 is called fully symmetric if

x ∈ E , y ∈ L0,

s∫
0

µt(y)dt ≤
s∫

0

µt(x)dt for all s > 0

entail that y ∈ E and ‖y‖E ≤ ‖x‖E .



Preliminaries

Define

Rτ = {x ∈ L1 +M : µt(x)→ 0 as t →∞}.

Theorem

Equipped with the norm

‖x‖L1+M =

∫ 1

0
µt(x)dt,

Rµ is a fully symmetric space.

Proposition

If τ(1) =∞, then a symmetric space E ⊂ L1 +M is contained in
Rτ if and only if 1 /∈ E.
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Dunford-Schwartz individual ergodic theorems in Rτ

A linear operator T : L1 +M→ L1 +M is called a
Dunford-Schwartz operator if

‖T (x)‖1 ≤ ‖x‖1 ∀ x ∈ L1 and ‖T (x)‖∞ ≤ ‖x‖∞ ∀ x ∈M.

If a Dunford-Schwartz operator T is positive, we write T ∈ DS+.

Given T ∈ DS+ and x ∈ L1 +M, recall that

An(T , x) =
1

n

n−1∑
k=0

T k(x), n = 1, 2, . . .

A sequence {xn} ⊂ L0 is said to converge to x̂ ∈ L0 almost
uniformly (a.u.) (bilaterally almost uniformly (b.a.u.)) if for every
ε > 0 there exists e ∈ P(M) such that τ(e⊥) ≤ ε and
‖(x̂ − xn)e‖∞ → 0 (respectively, ‖e(x̂ − xn)e‖∞ = 0).
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Dunford-Schwartz individual ergodic theorems in Rτ

Theorem (Yeadon 1977)

Let T ∈ DS+ and x ∈ L1. Then the averages An(T , x) converge
b.a.u. to some x̂ ∈ L1.

Remark (Chilin-L 2015)

It can be seen that the iterating operators T that were considered
by Yeadon can be uniquely extended to a positive
Dunford-Schwartz operators, hence the assumption T ∈ DS+.

Here is an extension of Yeadon’s result:

Theorem (Junge-Xu 2007)

If T ∈ DS+ and x ∈ Lp, 1 < p <∞, then the averages An(T , x)
converge b.a.u. to some x̂ ∈ Lp. If p ≥ 2, then these averages
converge also a.u.
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Dunford-Schwartz individual ergodic theorems in Rτ

In fact, we have a.u. convergence in the above theorems:

Theorem (L 2016)

Let T ∈ DS+ and x ∈ Lp, 1 ≤ p <∞. Then the averages
An(T , x) converge a.u. to some x̂ ∈ Lp.

Proof of this result is based on the following notion.

Definition

Let (X , ‖ · ‖) be a normed space. A sequence of maps
Mn : X → L0 is called bilaterally uniformly equicontinuous in
measure (b.u.e.m.) at zero if for every ε > 0 and δ > 0 there exists
γ > 0 such that, given x ∈ X with ‖x‖ < γ, there is a projection
e ∈ P(M) satisfying conditions

τ(e⊥) ≤ ε and sup
n
‖eMn(x)e‖∞ ≤ δ.
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Dunford-Schwartz individual ergodic theorems in Rτ

Remark

It is easy to see that, in the commutative case, bilateraly uniform
equicontinuity in measure at zero of a sequence Mn : X → L0 is
equivalent to the continuity in measure at zero of the maximal
operator M∗(f ) = sup

n
|Mn(f )|, f ∈ X .

Proposition (Crucial Step)

Let (X , ‖ · ‖) be a Banach space, Mn : X → L0 a sequence of linear
maps that is b.u.e.m. at zero on X . Then the set

{x ∈ X : {Mn(x)} converges a.u.}

is closed in X .
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Dunford-Schwartz individual ergodic theorems in Rτ

Proposition

The sequence {An} given by (1) is b.u.e.m. at zero on Lp,
1 ≤ p <∞.

Since the set Lp ∩ L2 is dense in Lp, 1 ≤ p <∞, and it can be
shown that the sequence {An(x)} converges a.u. whenever x ∈ L2,
the averages An(x) converge a.u. for every x ∈ Lp. Q.E.D.



When X = Lp, 1 ≤ p <∞, we have the following result.

Theorem (Noncommutative Banach Principle)

Let Mn : Lp → L0 be a sequence of positive continuous (with
respect to the measure topology in L0) linear maps such that for
every x ∈ Lp and ε > 0 there exists a projection e ∈ P(M)
satisfying

τ(e⊥) ≤ ε and sup
n
‖eMn(x)e‖∞ <∞.

Then the set {x ∈ X : {Mn(x)} converges a.u.} is closed in Lp.



Dunford-Schwartz individual ergodic theorems in Rτ

Here is an extension of the above to Rτ :

Theorem

Let T ∈ DS+ and x ∈ Rτ . Then the averages An(T , x) converge
a.u. to some x̂ ∈ L1 +M. Moreover, if E ⊂ L1 +M is a fully
symmetric space such that 1 /∈ E (E ⊂ Rµ) and x ∈ E, then these
averages converge a.u. to some x̂ ∈ E.

If the algebra M is non-atomic, then Rµ is the largest subspace of
L1 +M for which we have a.u. convergence of the averages (1):

Theorem

If x ∈ (L1 +M) \Rµ, then there is T ∈ DS+(M, τ) such that the
sequence {An(T , x)} does not converge a.u.
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Dunford-Schwartz individual ergodic theorems in Rτ

Let {Tu : u ∈ Rd
+} be a semigroup of contractions of L1 which is

continuous in the interior of Rd
+, that is,

‖Tu(x)− Tv(x)‖1 → 0 as u→ v

for all x ∈ L1 and v = (v1, . . . , vd) ∈ Rd
+ with vi > 0, 1 ≤ i ≤ d .

Denote

At(x) =
1

td

∫
[0,t]d

Tu(x)du, x ∈ L1, t > 0. (2)

The next theorem is a noncommutative extension of a theorem of
Dunford and Schwartz.

Theorem

If {Tu : u ∈ Rd
+} ⊂ DS+ is a semigroup continuous on the interior

of Rd
+ and x ∈ L1. Then the averages At(x) given by (2) converge

a.u. to some x̂ ∈ L1.
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Dunford-Schwartz individual ergodic theorems in Rτ

In particular, we have the following.

Corollary

Let {Ts}s≥0 ⊂ DS+ be a semigroup that is strongly continuous on
L1 at every s > 0. Then the averages

1

t

∫ t

0
Ts(x)ds

converge a.u. for every x ∈ L1 as t →∞.

Let (E , ‖ · ‖E ) ⊂ L1 +M be a symmetric space, and let
{Tu : u ∈ Rd

+} ⊂ DS+ be a semigroup of contractions in E . We
say that {Tu} is continuous in the interior of Rd

+ on E , if

‖Tu(x)− Tv(x)‖E → 0 as u→ v

for all x ∈ E , v = (v1, . . . , vd) ∈ Rd
+ with vi > 0, 1 ≤ i ≤ d .
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Dunford-Schwartz individual ergodic theorems in Rτ

Denote, as before,

At(x) =
1

td

∫
[0,t]d

Tu(x)du, x ∈ E , t > 0. (3)

Theorem

Let {Tu : u ∈ Rd
+} ⊂ DS+ be a semigroup continuous in the

interior of Rd
+ on Rτ and L1. Then for every x ∈ Rτ the averages

(3) converge a.u. as t →∞ to some x̂ ∈ Rτ .

Theorem

Let 1 /∈ E ⊂ L1 +M be a fully symmetric space, and let
{Tu : u ∈ Rd

+} ⊂ DS+ be a semigroup continuous in the interior of
Rd

+ on Rτ , L1, and E. Then for every x ∈ E, the averages (3)
converge a.u. as t →∞ to some x̂ ∈ E.
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Weighted noncommutative individual ergodic theorems

Let C1 be the unit circle in C. A function P : Z→ C is said to be
a trigonometric polynomial if P(k) =

∑s
j=1 zjλ

k
j , k ∈ Z, for some

s ∈ N, {zj}s1 ⊂ C, and {λj}s1 ⊂ C1.

A sequence {βk}∞k=0 ⊂ C is called bounded Besicovitch if

(a) supk |βk | ≤ C <∞;

(b) for every ε > 0 there exists a trigonometric polynomial P such
that

lim sup
n

1

n

n−1∑
k=0

|βk − P(k)| < ε.
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Weighted noncommutative individual ergodic theorems

Theorem (Chilin-L-Skalski 2005)

Assume that M has a separable predual. Let T ∈ DS+, and let
{βk} be a bounded Besicovitch sequence. Then the averages

Bn(x) =
1

n

n−1∑
k=0

βkT
k(x) (4)

converge b.a.u. for every x ∈ L1 to some x̂ ∈ L1.

Here is an extension of the previous theorem:

Theorem

Let M, T , and {βk} be as above. Then for every x ∈ Rτ the
averages (4) converge a.u. to some x̂ ∈ L1 +M.



Weighted noncommutative individual ergodic theorems

Now we shall present a noncommutative Wiener-Wintner theorem.

Denote

An(x , λ) =
1

n

n−1∑
k=0

λkT k(x), (5)

where x ∈ L1 +M, T ∈ DS+, and λ ∈ C1.

Definition

We say that x ∈ L1 +M satisfies Wiener-Wintner property and we
write x ∈WW if, given ε > 0, there exists a projection e ∈ P(M)
with τ(e⊥) ≤ ε such that the sequence {An(x , λ)e} converges in
(M, ‖ · ‖∞) for all λ ∈ C1.
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Weighted noncommutative individual ergodic theorems

Assume now that τ is finite, T ∈ DS+ is an ergodic
homomorphism, and τ ◦ T = τ .

Then we have the following noncommutative Wiener-Wintner
theorem which generalizes the classical Wiener-Wintner theorem.
It is an improvement of (L 2014) where the convergence was given
in terms of the two-sided multiplication by a projection e ∈ P(M).

Theorem

L1 ⊂WW, that is, for every x ∈ L1 and ε > 0 there exists a
projection e ∈ P(M) such that τ(e⊥) ≤ ε and {An(x , λ)e}
converges in (M, ‖ · ‖∞) for all λ ∈ C1.
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Applications

Every individual ergodic theorem for Rτ above (except possibly the
previous one) is valid for any noncommutative fully symmetric
space E ⊂ Rτ (with the limit x̂ ∈ E ). We shall give a few
examples of noncommutative fully symmetric subspaces of Rτ .

Recall that τ(1) =∞. As we have noticed, a symmetric space
E ⊂ L1 +M is contained in Rτ if and only if 1 /∈ E .

1. Let Φ be an Orlicz function, that is, Φ : [0,∞)→ [0,∞) is a
convex continuous at 0 function such that Φ(0) = 0 and Φ(u) > 0
if u 6= 0.

Denote

LΦ =

{
x ∈ L0 : τ

(
Φ

(
|x |
a

))
<∞ for some a > 0

}
.

be the corresponding noncommutative Orlicz space.
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Applications

Let

‖x‖Φ = inf

{
a > 0 : τ

(
Φ

(
|x |
a

))
≤ 1

}
be the Luxemburg norm in LΦ.

Since τ(1) =∞, we have τ
(
Φ
(
1
a

))
=∞ for all a > 0, hence

1 /∈ LΦ, hence LΦ ⊂ Rµ.

2. A space (E , ‖ · ‖E ) is said to have order continuous norm if
‖xn‖E ↓ 0 whenever xn ∈ E+ and xn ↓ 0.

If E = E (M, τ) is a noncommutative fully symmetric space with
order continuous norm, then τ ({|x | > λ}) <∞ for all x ∈ E and
λ > 0, so E ⊂ Rτ .
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Applications

If E = E (0,∞) is a symmetric function space, then the space

E (M) = {x ∈ L0 : µt(x) ∈ E} with ‖x‖E(M) = ‖µt(x)‖E

is a symmetric space.

3. Let ϕ be an increasing concave function on [0,∞) with
ϕ(0) = 0 and ϕ(t) > 0 for some t > 0.

Denote

Λϕ(M, τ) =

{
x ∈ L0(M, τ) : ‖x‖Λϕ =

∫ ∞
0

µt(x)dϕ(t) <∞
}
,

the corresponding noncommutative Lorentz space.

Since Λϕ(0,∞) is a fully symmetric function space and
Λϕ(0,∞) ⊂ Rµ(0,∞) whenever ϕ(∞) =∞, the noncommutative
fully symmetric space Λϕ(M, τ) is contained in Rτ .
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Applications

4. Let E (0,∞) be a fully symmetric function space, and let
Ds : E (0,∞)→ E (0,∞), s > 0, be the bounded linear operator
given by Ds(f )(t) = f (t/s), t > 0.

The Boyd index qE is defined as

qE = lim
s→+0

log s

log ‖Ds‖
.

It is known that 1 ≤ qE ≤ ∞. If qE <∞, then 1 /∈ E (M), and so
E (M) ⊂ Rτ .

THANK YOU!
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