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Notation

(M,g) : an n-dimensional connected Riemannian manifold without boundary,
V : the Levi-Civita connection with respect to g,
X(M) : the set of smooth vector fields on M,

C>(M) : the set of smooth functions on M.

A gradient vector field and a Hessian of f € C°° (M) are defined by
g(Vf,X)=df(X) and Hess f(X,Y) =g(VxVf,Y), XY eX(M),

respectively. A curvature tensor, a Ricci curvature, and a scalar curvature are
defined by

R(X Y)Z = Vvaz — VYsz — V[X’Y]Z

Ric,(X,Y) : Zg (e;, X)Y,e;), and R::ZRicg(ei,ei),

1=1

respectively. Here X,Y, Z € X(M) and {e;}?_; is an orthonormal frame of M.



Ricci Solitons

Definition (Hamilton 1982) A Ricci soliton is a Riemannian manifold (M, g)
admitting a vector field V' € X(M) and a real constant \ € R such that

1
Ric, —|—§£Vg = \g,

where Ly is the Lie derivative in the direction of V. The soliton (M, g) is

shrinking if A >0, steady if A=0, expanding if X\ <O0.

Remark A typical example of Ricci solitons is an Einstein manifold, where V' is
given by a Killing vector field. In this case, we say that the soliton is trivial.

If V= Vf for some smooth function f : M — R, then the soliton (M, g) is
called a gradient Ricci soliton. In such a case, the soliton satisfies

Ric, +Hess f = Ag.

We refer to f as a potential function of the gradient Ricci soliton.



A gradient Ricci soliton Ric, +Hess f = Ag

A typical example of gradient Ricci solitons is the Gaussian soliton (R™, gg).

® go is the canonical flat metric on R".

e a potential function f : R™ — R is given by f(z) = 4]|z|*> (A > 0 or XA < 0).

Remark The Gaussian soliton is non-compact.

1
A Ricci soliton Ric, +§£Vg = \g

Given a Ricci soliton (M, g), we may define a time-dependent vector field by
W, := —:-V. We denote by ¢, the flow generated by W;. The metric

— ot
g(t) = —2Xty;g

Is a solution to the Ricci flow
dg

a(t) = —2 Rng(t) .



Background and Motivation

1
A Ricci soliton Ric, +§£vg = \g

Introduced by Hamilton (1982)
A natural generalization of an Einstein manifold
The Ricci flow has achieved great success in finding canonical metrics

Ricci solitons play important roles in the Ricci flow
— Correspond to self-similar solutions to the flow
— Arise as singularity models of the flow
Intimately related to Li-Yau-Hamilton type estimates

— Steady Ricci solitons achieve the equality in the estimates

Ricci solitons play important roles in Superstring Theory



Properties of Ricci Solitons

1
A Ricci soliton Ric, +§£vg = Ag is

shrinking if A >0, steady if A=0, expanding if X <O0.

Theorem (Perelman 2002) Any compact Ricci soliton must be gradient.

Theorem (Hamilton 1993) Any compact steady or expanding gradient
Ricci soliton must be trivial.

Theorem (Hamilton 1986 for n = 2, lvey 1992 for n = 3) In dimen-
sion n < 3, any compact shrinking Ricci soliton must be trivial.




Some Examples of Ricci Solitons

Compact Case

Koiso 1990, Cao 1994 : shrinking gradient Kahler Ricci solitons
— P!(C)-bundles over Kahler-Einstein manifolds, e.g. CP?#CP*

Wang and Zhu 2003 : shrinking gradient Kahler Ricci solitons
— Toric Fano K3hler manifolds, e.g. CP?#2CP?

Complete Non-Compact Case

Hamilton 1986 : steady gradient Ricci solitons
— Cigar solitons (R2 da” +-dy- ) with f = —log(1 + 22 + 3?)

9 1—|—CI$2 +y2

Futaki and Wang 2009 : expanding gradient Kahler Ricci solitons

— Cone manifolds over compact Sasaki manifolds



. Curvature and Topology

One of the most natural and important topics in Riemannian geometry is the
relation between curvature and topology of underlying manifolds.

Theorem (Lohkamp 1992) Any n-dimensional manifold M, n > 3, admits
a complete Riemannian metric ¢ whose Riemannian curvature satisfies

—a(n) < Rm < —b(n),

where a(n) > b(n) > 0 are positive constants depending only on n.

Corollary (Lohkamp 1992) Any n-dimensional manifold M, n > 3, admits
a complete Riemannian metric g whose Ricci curvature is everywhere negative.

Remark Corollary above says that there are no obstructions to the existence of
complete Riemannian metrics with negative Ricci curvature.



a Myers's Theorem

Natural questions to ask about a complete Riemannian manifold (M, g) are

e When is M compact?

e How large is the diameter of M7

Theorem (Myers 1941) Let (M,g) be an n-dimensional complete
Riemannian manifold. If there exists a positive constant A > 0 such that

Ricy (X, X) 2 M\g(X, X), X € X(M),
then M is compact with finite fundamental group. Moreover,

n—1

diam(M,g) <« )\




a Ambrose’s Theorem

Theorem (Ambrose 1956) Let (M,g) be a complete Riemannian
manifold. Suppose that there exists a point p € M for which every geodesic
v : [0, 400) — M emanating from p satisfies

+o0
| Riey (0. 30t =+

Then (M, g) is compact.

Remark Ambrose’'s theorem above does not require the Ricci curvature to be
everywhere non-negative. Moreover, since

+00
Ric, > g (A>0) = / Ric, ((t),¥(t))dt = 400,
0

the compactness result in Myers's theorem follows from Ambrose's theorem.



i Cheeger-Gromov-Taylor’s Theorem

Theorem (Cheeger, Gromov, and Taylor 1981) Let (M,g) be an n-
dimensional complete Riemannian manifold. Suppose that there exist a point

p € M and positive constants rg > 0 and v > 0 such that
(3 +77)
d*(z, p)

for all z € M satisfying d(z,p) > rog, where d(z,p) is the distance between
x and p. Then (M, g) is compact. Moreover, the diameter from p satisfies

Ricy(x) = (n — 1)

diam, (M, g) < roexp (z) :
v

Remark Theorem above is not true if v = 0. In fact, the Euclidean space R"
equipping with the metric dr? + rg(6) outside some compact set is not compact
and the Ricci curvature satisfies the condition as in Theorem with v = 0, where
g(0) is the standard metric on the sphere S"~1.



5 Modified and Bakry-Emery Ricci Curvatures

Let (M, g) be an n-dimensional complete Riemannian manifold, V' € X(M)
and f € C>*(M). We put

1
Ricy := Ric, —|—§£Vg, Ricy := Ric, + Hess f

and call them a modified Ricci curvature and a Bakry—émery Ricci curvature,
respectively. We also put

Ay =A; =V -V, Ap=A,-Vf.-V
and call them a V-Laplacian and a Witten-Laplacian, respectively.
e Good substitutes of the Ricci curvature and the Laplacian to establish
Eigenvalue estimates, Li-Yau Harnack inequalities, Liouville theorems, - - -

Question Are classical results for Einstein manifolds true for the solitons ?

Remark The shrinking Gaussian soliton (R™, gg) is non-compact.



A Compactness Theorem for Ricci Solitons
0

Theorem (Fernandez-Lépez and Garcia-Rio 2004) Let (M, g) be a
complete Riemannian manifold satisfying

1
Ricy := Ric, —|—§£vg > A\g

for a positive constant A > 0. Then
M is compact <= |V]is bounded on M.

Moreover, if M is compact, then the fundamental group satisfies

’7T1(M)| < +00.

Theorem (Wylie 2007) The finiteness of 71 (M) remains valid under the
completeness of (M, g) and a positive lower bound on Ricy .




A Diameter Bound via Ricy
n

Theorem (Limoncu 2009) Let (M,g) be an n-dimensional complete
Riemannian manifold satisfying

1
Ricy := Ric, —|—§£Vg > A\g

for a positive constant A > 0. If |V| < k for a non-negative constant
k > 0, then M is compact. Moreover,

diam(M, g) < % <\2—|—\/k;—|—(n—1))\>.

Remark Recently, under the same assumption as in Theorem above, the upper
diameter bound above was improved to

1
diam (M, g) < 3 (Qk +\/4k2 + (n — 1))\7T2) .

By taking £ = 0, Theorem above is reduced to the Myers's theorem.



A Diameter Bound via Ricy
§

Theorem (Wei and Wylie 2007) Let (M,g) be an n-dimensional
complete Riemannian manifold satisfying

Ricy := Ricy +Hess f > Ag

for a positive constant A > 0. If |f| < k for a non-negative constant
k > 0, then M is compact. Moreover,

n—l_l_ 4k
VIS

diam(M, g) <7

Remark Recently, under the same assumption as in Theorem above, the upper
diameter bound above was improved to

By taking K = 0, Theorem above is reduced to the Myers's theorem.



1 Einstein Myers Theorem —> Ambrose Theorem

| |

Ricci Soliton Myers Theorem — Ambrose Theorem

Theorem ( — 2015) Let (M,g) be a complete Riemannian manifold.
Suppose that there exists a point p € M for which every geodesic v :
[0, 4+00) — M emanating from p satisfies

+00
/O Ricy (4(t), 4(t))dt =

and |V| < k for a non-negative constant kK > 0. Then (M, g) is compact.

Remark An Ambrose type theorem above was already proved by Zhang (2013)
in the case where V. = V f.




Einstein Myers Theorem — Ambrose Theorem

! |

Ricci Soliton Myers Theorem — Ambrose Theorem

Theorem ( — 2016) Let (M,g) be a complete Riemannian manifold.
Suppose that there exists a point p € M for which every geodesic v :
[0, 4+00) — M emanating from p satisfies

+0o0
[ Ries (o) (o)t = +oc

and | f| < k for a non-negative constant k£ > 0. Then (M, g) is compact.




Some Cheeger-Gromov-Taylor Type Compactness
- Theorems via Modified Ricci Curvature

Theorem (Soylu 2016) Let (M,g) be an n-dimensional complete
Riemannian manifold. Suppose that there exist a point p € M and positive
constants g > 0 and v > 0 such that

(3+?
d*(z, p)

for all x € M satisfying d(xz,p) > rg, where d(x,p) is the distance between
x and p. If |f| < (n — 1)k for a non-negative constant k£ > 0, then (M, g)
Is compact. Moreover, the diameter from p satisfies

Rics(z) = (n —1)

1
diamp(M,g) < 7o exp (—2 \/8]{:2 + 7202 + 4k\/4k2 + 1292 (1 + 4’()2)> .
v

Remark By taking kK = 0, Theorem above is reduced to the Cheeger-Gromov-
Taylor's compactness theorem.




Recall Wei and Wylie (2007) proved that a complete Riemannian manifold (M, g)
with a positive lower bound on the Bakry—Emery Ricci curvature Ricy > Ag
(A > 0) is compact if | f| < k for some non-negative constant k > 0.

Theorem (Limoncu 2011) Let (M, g) be an n-dimensional complete
Riemannian manifold satisfying

Rin = )\g

for a positive constant A > 0. Suppose that there exist a point p € M
and a non-negative constant k > 0 such that

k
V@) < g

for all x € M \ {p}, where d(x,p) is the distance between x and p. Then
(M, g) is compact. Moreover, the diameter from p satisfies

-
diam, (M, ¢) < —=vn — 1 + 4k.
p( g) \/X




[Theorem ( — 2016) Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exist a point p € M and positive constants
ro > 0 and v > 0 such that

(3+?
d?(z, p)

for all x € M satisfying d(xz,p) > rg, where d(x,p) is the distance between
x and p. If there exists a non-negative constant k > 0 such that

(n — 1)k
d(zx, p)

for all x € M \ {p}. Then (M, g) is compact. Moreover, the diameter from
p satisfies

Ricy(z) > (n — 1)

IV](x) < and k < v?

2k + \/4k? + (v2 — k)2
02—k '

diam, (M, g) < roexp (

Remark By taking kK = 0, Theorem above is reduced to the Cheeger-Gromov-
Taylor's compactness theorem.



m-Modified and m-Bakry-Emery Ricci Curvatures

Let (M, g) be an n-dimensional complete Riemannian manifold, V' € X(M)
and f € C°(M). For m € [n,+00), we put

(Ricg m = n,
Ricy; := 1
v ) Ric, +-Lyvg — Ve V* m>n,
\ 2 m—n
(Ricg m =n,
Ric’ := 1
/ <Ricg—l—Hessf— df @ df m>n
\ m—n

and call them an m-modified Ricci curvature and an m-Bakry-Emery Ricci
curvature, respectively. Here V* is the metric dual of V' with respect to g.

e Good substitutes of the Ricci curvature
e Important tools in Optimal Transport Theory by Lott, Sturm and Villani

e Play important roles in Perelman’s entropy formulas for the Ricci flow



Theorem (Limoncu 2009) Let (M,g) be an n-dimensional complete
Riemannian manifold. Suppose that there exists a positive constant A > 0

such that
Ricy, > Ag,

where m € [n,400). Then (M, g) is compact. Moreover,

v

diam(M, g) < —
(M, g) 7

m — 1.

Remark The Myers type theorem above was already proved by Qian (1995) in
the case where V = V f.

Ric, Myers type Ambrose type | C-G-T type
Ricy FL-GR, Limoncu, — Zhang, — —
Ricy | Wei-Wylie, Limoncu, — — Soylu
Ricy, Limoncu 77 77
Ric’' Qian 77 77




Theorem ( — 2015) Let (), g) be an n-dimensional complete Riemannian
manifold. Suppose that there exists a point p € M for which every geodesic
v : [0, 400) — M emanating from p satisfies

+00
| R0 4(0)de = o0,

where m € [n,+00). Then (M, g) is compact.

Remark The Ambrose type theorem above was already proved by Cavalcante,
Oliveira and Santos (2015) in the case where V' = V f. The key ingredient
in proving an Ambrose type theorem above is the Riccati inequality for the m-
modified Ricci curvature

(my)?

m—1"

Rlcrr‘?(’%’y) < —mv o

which may be derived by applying the Bochner-Weitzenbock formula
1
iAV\VUP = |Hessu|? + Ricy (Vu, Vu) + g(VAyu, Vu), u e C®(M)

to the distance function u(x) = d(x,p). This formula was proved by Li (2014).



- A Cheeger-Gromov-Taylor Type Compactness
Theorem via m-Modified Ricci Curvature

Theorem ( — 2016) Let (M, g) be an n-dimensional complete Riemannian
manifold. Suppose that there exist a point p € M and positive constants
ro > 0 and v > 0 such that

(3 ++?
d*(z, p)

for all x € M satisfying d(x,p) > rg, where m € [n,+o0) and d(z,p) is the
distance between x and p. Then (M, g) is compact. Moreover, the diameter
from p satisfies

Ricy; (x) = (m — 1)

s

diam, (M, g) < roexp (—) :
v

Remark A similar Cheeger-Gromov-Taylor type compactness theorem via m-
Bakry-Emery Ricci curvature was established by Wang (2013).




Some Myers Type Theorems via (m-) Bakry-Emery

and (m-) Modified Ricci Curvatures

Ric, Myers Ambrose Cheeger-Gromov-Taylor
Ricy FL-GR, Limoncu, —

Ricy Wei-Wylie, Limoncu, —
Ricy, Limoncu

Ric? Qian
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