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Thermo Field Dynamics and entanglement entropy

-
Statistical treatment of a large number of interacting *@E
particles

» Statistical average:

The essential quantity in statistical mechanics in thermal equilibrium is the
statistical average of a quantity A, say over the grand canonical ensemble at

temperature T given by
(A)=Z1(B) Tr[Ae™""]. (1)

» The partition function:

Z(B) = Tre PH. (2)

» The inverse temperature:

B=kg T L (3)
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Basics of thermo field dynamics (TFD) “?

> Matsubara observation (1955) [T. Matsubara, Prog. Theor. Phys., 14, 351, 1955]:

The statistical average (A) has the properties similar to the vacuum
expectation value of A in quantum field theory!

> The TFD 'Formalism (1975) [Y. Takahashi, H. Umezawa, Collective Phenomena 2, 55, 1975]:

(A
Construct a field theory in which the vacuum expectation value coincides
with the statistical average, i.e.

(A) = Z71(B) Tr[Ae 7] = (0(B)|Al0(5)). (4)

» Here |0(3)) is the temperature dependent vacuum state in a new
space to be constructed.
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Basics of thermo field dynamics (TFD) ‘?

» General considerations:

Define a suitable thermal state |O(ﬂ)> which satisfy

(0(B)IFI0(8)) = Z7M(8) D _ (n|F|n) (5)

for arbitrary dynamical variable F, where
H{n) = Ep|n), (n[m) = bpm. (6)
Now expand the thermal state |0(/3)) in terms of the energy eigenstates |n):
0(8)) = _Im) fal5). (7)
Insert (7) back in (5) to get

fy (8) fm(B) = Z71(B) €7 & G- (8)
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Basics of thermo field dynamics (TFD) ‘?

Equation (8) cannot be satisfied for mere numbers f,(3), but one notices that it
can be regarded as the orthogonality condition in a Hilbert space in which the
expansion coefficient f,(3) is a vector. In other words,

the state |0(8)) is a vector in the space spanned by |n) and £,(3).

S

» Adding fictitious degrees of freedom.
A

In order to realize such a representation we introduce a fictitious system which is
of exactly the same structure as physical one under consideration.

The new tilde system is described by the Hamiltonian H and the tilde
Hilbert space is spanned by the vectors |A):
(

ARy = E,|AY, (A]M) = 8pm. (9)
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The double Hilbert space i?%
We then consider the space spanned by the direct product of |n) and |A) with
properties (i, |l ) = (|1 G (10)
(s, nl |, ) = (] G (11)
(nlFlm) = (#lF7| 7). (12)
If we now choose
f2(8) = |7y e™ "5 Z712(8), (13)

the relation (8) is satisfied due to (9). With this one can obtain the thermal state

10(8)):




- -
Thermal equilibrium vacuum state for bosons and fermlon@

» The total Hamiltonian in the double Hilbert space is given by

H=H-H, (15)J

with H = E, a,t ax and H = E, 5}: 3k, is invariant under fermionic thermal
Bogoliubov transformations:

ax,3 = ax cosh0(k, ) — ak sinh 8(k, ), (16)
Gk = 3k coshO(k, B) — al sinh6(k, ), (17)
or bosonic thermal Bogoliubov transformations:
ax,p = ax cosO(k, () — ak sin8(k, ), (18)
dk,p = 8k cosO(k, () — ak sinf(k, B). (19)

» The vacua are connected by
A

0(8)) =" 0,0), (20)

g

with generator G =i 3", 0 (al &1 — &k ar).
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The TFD Fock space @

» One can show that

0(8)) = I, (c0159k(62 t\zir(];)k(iﬁ) a, ak) |0,0), for fermions, (21)
Il omaE € 5l 10,0), for bosons.
» One particle state for bosons:
: _ 1 _ 1 i
SO = == 3l00) = s 0 (@)
» One particle state for fermions:
t _ . _ 1
a'(B)[0(8)) ) 310(8)) 50 a'o(s)),  (23)
where . 5
e* w
fB—e_/@w_17 fF 1+e Bw (24)
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Interpretation of the double Hilbert space. ‘?

The one particle state is build up from the thermal equilibrium state o(3)) by
adding one particle without tilde or by eliminating one particle with tilde.

D—

The particle with tilde is a hole of the physical particle (similar to the Dirac sea).

 —

Particle

/

The hole of particle
(Tilde particle)
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Normal equilibrium density matrix *@"

» Assume a diagonal Hamiltonian:

00 N
H= Z (ZE;n;—i—EO) [n1,....nn) (N1, ..., nn]|, (25)
{n}=0 \i=1
where n; = a,T ai, and {n;} = {n}¥, =n1,... nn.
» Compute the relevant statistical quantities:
N —Ko

) N —B E
Z = Tr{i} (efBH) = Z <{€i}|eiﬁH ‘{€/}> = H 1 i e—;E/' = H 1 i e—Ki’
i=1

{¢;}=0 i=1

(26)
» The ordinary density matrix in equilibrium:

N
efﬁH 1 — Ki ni—Ko

pg=—5—=75 ), e {nit) (i3l (27)
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Extended equilibrium density matrix ‘?

» Define a TFD statistical state, V), b

et e -3 %K;n,-JrKo
=3 Vel il = s 3 e (& >|{n,-}> (7)) -
{ni}=0 \/? {ni}=0

(28)

> The genera| representation theorem [ M. Suzuki, J. Phys. Soc. Japan 54 no. 12, (1985)]:

The statistical state |W) is independent of the chosen representation. J

» The extended density operator is given by

SIEES S

{n/} 0 {m;}=0

-3 (ZK (it mi)+2 K ) {ni}) {mi}[ {Ai}) ({ini}] .

(29)
» Choose a bipartite system, namely

{n}ly = {n} | J{ndppns PSN—1, N>2. (30)
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Partial density matrix and entanglement entropy ‘?

Tracing over the parameters of the second system B

oo

pa=Trieyp Z Z A ATIIANIAY

-2 e
)0 {mi}-o

{2
I3
g Ky (2+n+mp)

{nu}) ({mu 3 A (A} H (eK“‘ — 1) .

N\H

(31)

Finally, the extended renormalized entanglement entropy is given by

Sa(Ku) = —=Triay (pa Inpa)

; (f[ coth ’:“) zi: {Ku (1 + coth %) —21n (eK" - 1)} - (32)




Thermo Field Dynamics and entanglement entropy
o

e
Schematic representation of the partial density matrix *?%

DOUBLE HILBERT SPACE
ORIGINAL SYSTEM ‘ ‘ ISOMORPHIC COPY

=
1

O

1 T .:
i /’tOPY OF ALICE\ ! A
1 / _ | I —>
i ®II\.H_A>./ i pA
1
;::::::::: | _:_______:_========il
1 — .
COPY OF BOB i
| - o
: ' I TRACED OUT
| :
L H




Riemannian metric on the space of parameters

-
Fisher information metric “?%

» The parameter space: let X be a set of random variables from a real sample
space X, then

a set of distributions f(x, 5) parametrized by 0. forms a statistical manifold.

S

> The Fisher information metric [J. Burbea, C. R. Rao, Probab.Math.Statist. 3 no. 2, (1984)]:

The Riemannian metric on this manifold is the Fisher information metric defined
by the following Lebesgue integral:

= =

o L L AInF(R,0) 9lnf(R,0)
gl“’(e) - /DX f(X’ ) o0H o0V
X

(33)

» The only Riemannian metric is Fisher metric for which the geometry is
invariant under coordinate transformations of 8 and also under one-to-one
transformations of the random variable X, [ s. Amari, H. Nagaoka, AMS, 2007].
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Fisher information metric ‘?

Following [ H. Matsueda, arxiv:1408.5589 [hep-th]], one can define Fisher metric on the
space parametrized by the inverse scaled temperatures K, by:

ng%:—g (AuBy+ A, Byt Cu+ ED) . (34)J
A= 2csch—, F= H coth (35)
Bu:1+coth—”—Tcsch2%—%, (36)
Cov = Sy Kz— g oth 4") cschz% + ﬁ} , (37)
Dy, = 2csch2% 8, -+ tanh % > {@” csch%} : (38)

T#U

E= —% f: [Ka (1 + coth %) —2In (el — 1)] : (39)
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. : ()]
N minimally coupled 1d fourth-order PU oscillators “?

The diagonalization and quantization procedures can be found in [pimov, Miadenov
Rashkov, Vetsov, Nuc. Phys. B 918 (2017), 317—336]

- -

i U - e .
L4 ~ ’ ~ L4 ~
’ . N ’ N
)/ \ )/ \ )/ \
--'PUOl PUOz‘---)'PUON.---
N 4 \ (4 \ 4
~ ’ ~ 4 ~
~ ’ ~ L
L . .

'''''''

» The system 4-th order PUQs is described by the foIIowing Hamiltonian

N 1

1 L1

2 Z > sen(au) (PPl +wf ix T3 Z Cpv Xp Xy
#=1 k=0 (pv)=1

» The Hamiltonian after diagonalization and quantization:

2N 1
V= Zl hAj (a}a,- + 5) : (41)
Jj=

(40)



Riemannian metric on the space of parameters Example: two fourth-order PU oscillators

Fisher metric for two fourth-order PU oscillators

» The components of the 2d Fisher information metric for two minimally
coupled fourth-order PU oscillators:

1 K
g1 =g coth —= csch2 ! [Kl (3 + 5coth2 =L 4 7esch? ) + 4tanh —

+4 coth Tl (Kl + K2 — 5+ K> coth Tz — 2log [(eK1 — 1) (eKz — 1)])} , (42)

1 Ki Ko K K
812 =g = o5 csch? =2 2 ©¢ ch® =2 {Kl (1 + 2 coth Tl) + K> (1 + 2 coth 72) —4

~2tog (e - 1) (¢ - 1)] | (43)

822 = 6i4 coth —cs ch? =2 Kz [Kz <3—|—5coth2 + 7 csch? ) + 4ta nh —

+4 coth 72 (Kl + K2 — 5+ Ki coth Tl — 2log [(eK1 — 1) (eKz — 1)])} , (44)

where K; = ShA;, i = 1,2, are the inverse scaled temperatures.



Riemannian metric on the space of parameters
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Scalar curvature and second order phase transitions *?%

» The elliptic case R > 0 (t; = e/):
2]

1. 10°%
0

—1.x 10
—-2.x10°5 |

t 1.0
A
The local maximum of the scalar curvature corresponds to the maximum strength

of the interaction between the components of the quasi-system.

A
The scalar curvature is free of divergencies, thus the quasi-system doesn't admit
second order phase transitions.
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Scalar curvature and second order phase transitions *@%

» The hyperbolic case R < 0:

10 i

The local minimum of the scalar curvature corresponds to the maximum strength
of the interaction between the components of the quasi-system.

A
The scalar curvature is free of divergencies, thus the quasi-system doesn’t admit
second order phase transitions.
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Scalar curvature and second order phase transitions *?%

» The Ricci flat case R = 0:

t

A
The Ricci flat case R = 0 corresponds to a free non-interacting quasi-system. J
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Concluding remarks

v

Begin with some Hamiltonian system.

Apply diagonalization procedure — quasi-system (different
Hamiltonian, same eigensystem).

v

v

Apply quantization procedure — quasi-quantum system.

TFD — double Hilbert space — extended entanglement entropy —
Fisher information metric — metric invariants — phase structure.

v
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