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Chapter 2. Planar Curves Whose Curvature Depends Only on the Distance from a Fixed Point

The Moving Frame Associated With a Plane Curve

Here we consider in some details the cases in which the function in
question is either proportional or inversely proportional to the
distance from the origin. Let us start with the first case, namely

K=or, r=|x| =Vvx?+ z2 (1)

where x, z are the Cartesian coordinates in the plane XOZ, which
have to be considered as functions of the arc-length parameter s,
and o is assumed to be a positive real constant.

If 9(s) denotes the slope of the tangent to the curve with respect
to the OX axis one has the following geometrical relations

do(s) dx dz _
= K(s), i cosf(s), Fri sin6(s) (2)
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The Moving Frame Associated With a Plane Curve

which can be deduced also from the Frenet-Serret equations

dx(s) dT dN
s -6 g =aN o=

where T and N are are respectively the tangent and the normal
vectors to the curve, and s is the natural parameter along it.
Combining (1) and (2) we get

—kT (3)

do(s)
)~ wtr) (@

which is still a quite unpromising equation. We will proceed (as
suggested but not pursued in Singer [1999]) by going to the
co-moving frame (T, N) associated with the curve
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The Moving Frame Associated With a Plane Curve

x=£&T+ 1N (5)
and accordingly the Frenet-Serret equations (3) take the form

d¢ dn

Ezfzm)—kl7 d—s:n:—nf. (6)
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Integration

Multiplying the first equation in (6) by £, the second one by 7 and
summing up the so obtained expressions, we find that

§=rf (7)

in which the dot means a differentiation with respect to the
arc-length parameter. Substituting this expression back into the
second equation of (6) and integrating we obtain
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Integration

S / w(r)rdr + ¢ (8)

where c is the integration constant. One should notice, however (cf.
equation (5)), that the coordinates in the moving frame are not
entirely independent but obey the constraint

&+ =r? 9)

which in view of equations (7) and (8) presents an ordinary
differential equation for the radial coordinate r.
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Bernoulli's Lemniscates

This curve is a special case (when a = ¢) of the Cassinian ovals
(see Mladenov [2000] ), defined by the equation

(*+2%)? -2 —x*)+a* —c* =0 (10)

and has a curvature (which can be found using formula (?7)), that
is linear in r. Inserting kK = or into equation (8) produces

3

or
-7 11
n 3 (11)
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Bernoulli's Lemniscates

(the integration constant is taken to be zero) and the scheme from
the previous section leads to the equation

dr / o2rt
—4/1= . 12
ds 9 (12)

Its integration is immediate and gives

r = \E cn(\/?s, \2) (13)

where cn(u, k) denotes one of the Jacobian elliptic functions in
which the first slot is occupied by its argument and the second one
by the so called elliptic modulus (a real number between zero and
one).
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Bernoulli's Lemniscates

Substituting this solution into equations (7) and (8) has as a result
the coordinates of the lemniscate in the moving frame

e = —\/Ecn( ﬁjs,\%)dn(\/?s,\z)sn(\/?s,\z)
(14)

With respect to the fixed one these functions give a new curve
which we will call the co-lemniscate.
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Bernoulli's Lemniscates

Written in terms of its components equation (5) tells us that the
lemniscate coordinates x, z are obtained from those of the

co-lemniscate &, n via a plane rotation specified by the slope angle
0, ie.,

x = &cosf —nsind, z=2¢sinf + ncosb. (15)

Obviously, what remains to be done is to find 8, and this can be
obtained via an integration of the first equation in (2). In this way
we obtain

0 = 3 arccos(dn(\/?s, \2))

. 2 1 .
= 3arcsin(ksn(y/ ?US, %)), k=+1-— k>

(16)
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Bernoulli's Lemniscates

Fig. 2.1 The Bernoullian co-lemniscate (left), Bernoulli’s lemniscate (middle) and
both of them (right) drawn via formulas (2.14) and (2.20) with o = 3.5.
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Sturmian Spirals

By their very definition (cf. Zwickker [1963]) these plane curves
possess the property that at each point their curvature radius R
coincides with the distance r from the origin. Formulated in
curvature terms this means that their curvature « is given by
formula (1), in which o = 1. Applying the scheme from Section 77,
one finds easily that

n=-r+c (17)
and .
V2er —
;= # c>0. (18)

It is convenient to perform the integration of the above equation by
switching to a new independent variable t defined by the equation

ds _,
dt
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Sturmian Spirals

This leads to the following results

(2 +1), ¢ = ct, n= %(1—t) (20)

l\)\n

Integration of the first equation in (2) gives us additionally that the
new parameter t coincides (up to a real constant) with the slope
angle, i.e.,

0=t (21)

By rewriting equation (5) in its components one has also the
relations

x =& cost —nsint, z=mncost+E&sint (22)
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Sturmian Spirals

which combined with the above findings provides the sought-for
parametrization of the Sturmian spirals
2 2

sint), z=c(

x = c(t cost+ cost+t sint). (23)

Making use of the above formulas one easily finds also the
arc-length as a function of the parameter t, i.e.,

c, t3
By exchanging the numerical parameter ¢ for 2p and taking into
account the fundamental relation R = r (for this curve), the above
formula can be written into the form, which is nothing else but the
intrinsic equation (in Ceséro form) of the Sturm spiral

_(R+2p) |R—p
5= o (25)
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Generalized Sturm Spirals (The Case When o > 1)

Due to the restriction on the allowed values of o one can consider
as well the other two obvious possibilities, 0 > 1 and 0 < 0 < 1,
which have to be viewed as a generalization of the ordinary
Sturmian spirals.

The Case When o >1

Here we will just outline the main ingredients of the derivation
following again the scheme described before, starting with the
equations

1—02)2+2 — 2
n=—or+c and jg:\/( a)rr+ cor—e. (26)
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Generalized Sturm Spirals (The Case When o > 1)

One easily concludes that the expression under the radical on the
right-hand side is positive provided that ¢ > 0 and r belongs either

to a finite or infinite interval, i.e.,

¢ and o < 1.

(27)
As the subsection title suggests our immediate task is to consider
the first of the possibilities presented above. Exchanging as before
the arc-length parameter (cf. equation (19)) with t, leads to the
formula

<r< d > 1 >
U+1_r_0—1 an 7 orr c+1

™

(o+sin mt)v te [_2\/07; — 1" 202 - 1]
(28)

C
f = —/—
o2 -1

by which we find also

fzg:;cosvaz—lt, =ot. (29)

dt o2 —1
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Generalized Sturm Spirals (The Case When o > 1)

The combination of the above results with those from equation
(28), the first equation in (26) and the general relations (22) gives

c (cos 02 —1t cosat N (osinvo? —1t+ 1)sinat>
2

02 —1 02 -1
(30)
cosvo2 —1tsinot (asin\/02—1t+1)cosat
z = ¢ —

02 -1 02 -1
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Generalized Sturm Spirals (The Case When o > 1)

The expressions for the arc-length and the intrinsic equation in this

case are
c cosvVo?—1t o
= t— 31
s Uz—l(a 02 —1 2 02—1) (31)
and
s = 02C— ] <\/g207_1 arcsin(% ((e* = 1)R —¢)) )

agT

1
I 2(1 — 02YR2 + 2¢co2R — 2
C\/a( 02)R? +2co?R c—|-2\/027_1

where in the derivation of the last equation we have used the defining
relation for the spiral which in this case states that r = oR.
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Generalized Sturm Spirals (The Case When o > 1)

A

a) b) o) ' d)

Fig. 2.2 a) The standard Sturmian spiral generated by (2.36) and ¢ = 0.25, and the
generalized Sturmian spirals drawn via formulas in (2.43) with the following set of

the parameters, b) c=1,0=1.02,¢c) c=5,0 = % d) ¢ =100, 0 =5/3.
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Generalized Sturm Spirals. (The Case When 0 < 0 < 1)

The first steps in the scheme amount to

d 1— 022+ 2cor — 2
n=—or+c, dr_\/( 02)r2 +2cor — ¢ (33)
s r

but one should keep in mind that now o <1 and r > %5 It turns
out also more convenient to perform the integration of the equation
on the right-hand side in (33) by introducing the parameter 7 via

the equation

ds 5
— = 34
dr d (34)
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Generalized Sturm Spirals. (The Case When 0 < 0 < 1)

which produces

c 7T arcsino
= _ , el-—,— 35
r o —sinct 2c c ] (35)
and
cCcoscT csinct
§ = =
o —sincT o —sincT (36)
o ctang —v1—02-1
o(r) = I

n .
V1—-02 otanG +vV1-02-1
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Generalized Sturm Spirals. (The Case When 0 < 0 < 1)

Further, via equations (22) and (36) we obtain

c o atan%—\/l—a2—1
——————cos | cT —

In

o —sinct V1—02 octang +V1-02-1
(37)
c . o ctang —V1-02-1
z = —sin|cr— In
o —sinct V1—0? octang ++V1—-02-1
and finally

. _ co n o+ (14 V1 —02?)tan (3 arcsin (£ — o))
(1 )3/2 1++v1—o02 +atan( arcsin (€ — o))

V(1 —02)r2 +2cor — 2

1—02
As before, one can easily obtain from the last expression the
intrinsic equation of the curve by replacing r with cR.
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Generalized Sturm Spirals. (The Sub-Case When 0 < 0 < 1

and ¢ =0)

Just for completeness we will consider the situation when the
integration constant ¢ which appears in the previous subsection is
zero. Obviously, the equations in (33) simplify to

d
n=—or, L= V1-02 (39)

ds

The integration of the second one is immediate and gives

r=v1-02s+a (40)
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Generalized Sturm Spirals. (The Sub-Case When 0 < 0 < 1

and ¢ =0)

where a denotes a new integration constant that is necessarily
positive. Following the scheme one ends with the results

¢=(1-0%)s+aV1-o2 n:—a(\/1—025+a> (41)

and

o(s) = ﬁln(\/l — 025+ a) (42)

which allow us to write down the explicit parametrization of the
corresponding spiral

x = ((1-0%)s+ aﬂ) cosO(s) + o(v/1—02s+ a)sinb(s)
(43)

z = ((1-0%)s+aV1-02)sind(s) — o(v/1— 025+ a)cos(s).
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Generalized Sturm Spirals. (The Sub-Case When 0 < 0 < 1
and ¢ =0)

120000 ~100000 ~80000 ~60000 ~40000 ~20000 K_yé / -150 -100 50 u

-20%

Fig. 2.3 Sturmian spirals generated by formula (2.50) and the constants ¢ = 0.9,
c =1 (left) and formula (2.56) with o = 0.9 and a =1 (right).
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Serret Curves

We should note that recently Lipkovski [1996] was able to prove
that all Serret curves S, are rational ones, i.e., they admit rational
parametrizations.

Going back to the original Serret [1845a] writings one can find a
formula for the curvature of S, in the form

B 3r . 2n+1
C2y/n(n+1)  2y/n(n+1)r

which depends solely on the radial coordinate r. This will be used
in the next section to generate them by following the original
construction of Mladenov et al [2010], [2012].

K(r)

(44)
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Generalized Serret Curves

The expression for the curvature of Serret’s curves (44) suggests
immediately a generalization of the form

k(r) =3\r — g, A >0, o> 1 (45)

r
Substitution of (45) in (8) produces
n=-A*+or (46)

but one has to notice that the integration constant in (8) is taken
to be zero. In these circumstances the differential equation

== (rP =) (47)
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Generalized Serret Curves

which follows from (9) reduces to the equation

dr
V@ =)=

in which the real parameters a and c are given by the formulas

c+1 flo—1
pr— pr— . 4

The integration of (48) can be performed in terms of the Jacobian
elliptic function dn(-,-), namely

= \ds (48)

2
oc+1

r(s) = adn(als, k), k = (50)
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Generalized Serret Curves

The next step in the scheme amounts to the evaluation of the
integral

0(s) = / k(r(s))ds (51)

and this gives

) s, k)

=3am(\/A(o + 1) s, k)— arccos
( Vo n(y/ s k
)

T

>/

where am(t, k) is the Jacobian amplitude function and

cn(t, k) =cosam(t, k).

Having at out disposal (7), (46), (50) and (52) can enter into (15)
and this gives the parametrization of the generalized Serret curves.

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 2. Planar Curves Whose Curvature Depends Only on the Distance from a Fixed Point

Generalized Serret Curves

Obviously the parametrization of the classical Serret curves can be
obtained by taking

1 2 1
- - =T heN (83)
2y/n(n+1) 2y/n(n+1)
and in this case the slope angle turns out to be
cn(pns, kn)
0 =3 ko) —(2n+1 — 54
n(s) = 3am(pns, ky) — (2n 4 1) arccos 0 (jims, k) (54)

where

_1\/2\/m+2n+1 ) _2\/ nnv1)
2 n(n+1) o 2y/n(n+1)+2n+1

(55)
Several plots of both classical and generalized Serret’s curves are
presented in Fig. 7?7 and Fig. 77.
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Generalized Serret Curves

Fig. 2.5 The classical Serret’s curves S; - left, So - middle and S3 - right for n =
1,2,3.
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Generalized Serret Curves

Fig. 2.6 Three examples of the generalized Serret’s curves C; (left), C2 (middle) and
C3 (right) generated respectively with parameter sets A = 1/3,0 = 7/5, A\ =4/3,0 =
9/7 and A = 1/7,0 = 5/3.
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ESSERKONEIS

This remarkable plane curve is defined as the geometrical locus of
the points in the plane for which the product of the distances from
two fixed points F; and F5 is a constant, which will be denoted
with ¢2, and the distance (F1, F») between F; and F» is also a
constant denoted with 2a. In the XOZ plane the Cassinian ovals
are given by the equation (an alternative form is (10))

(x* + 22 4 a%)% — 42°x% = c*. (56)

It is clear that these curves are symmetrical with respect to both
coordinate axes. Their shapes depend on the precise relationship of
the geometrical parameters a and c.
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ESSERKONEIS

From now on we will consider the case when a < ¢ < av/2 (this is
the case 3 in Fig. 7?). For ¢ > a\/2 we have ellipse like figures
illustrated by curves numbered as 4 and 5, and when ¢ = a the
curve is given by the equation

(x* 4+ 22)? = 22°(x* — 2%) (57)

which is nothing else than the Bernoullian lemniscate reproduced
here as curve 2. Finally in the case when a > ¢ the curves reduce to
two disjoint ovals (these ovals are depicted as curves I in Fig. 77).
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ESSERKONEIS

@ X&)

Fig. 2.7 Cassinian ovals drawn with different values of dimensionless ratio € = a/c.
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ESSERKONEIS

From now on we will consider the case when a < ¢ < av/2 (this is
the case 3 in Fig. 7?). For ¢ > a\/2 we have ellipse like figures
illustrated by curves numbered as 4 and 5, and when ¢ = a the
curve is given by the equation

(x* 4+ 22)? = 22°(x* — 2%) (58)

which is nothing else than the Bernoullian lemniscate reproduced
here as curve 2. Finally in the case when a > ¢ the curves reduce to
two disjoint ovals (these ovals are depicted as curves I in Fig. 77).
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ESSERKONEIS

Cassini has proposed the fourth degree curves (56) in an attempt to
describe properly the planetary motions in the solar system. The
equations (56) and (58) describe concrete algebraic curves. The
meaning of the last notion is that the rectangular coordinates x, z
of the points on the curve C in the plane satisfy an algebraic
equation

F(x,z)=0 (59)

where F(x, z) is a polynomial function in its variables.

Following the tradition established by Canham [1970], Deuling &
Helfrich [1976], Funaki [1955] and Vayo [1983] the Cassinian ovals
can be considered as a model of red blood cells. For more detail see
Angelov & Mladenov [2000] and Hadzhilazova et al [2011].
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Thank you for attention!
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