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Mechanical Equilibrium
Laplace-Young Equation

Figure: An infinitesimal local
expansion of the surface of the
membrane under increasing of the
pressure.

Let us consider the infinitesimal
curvilinear quadrangle ABCD
of the membrane. If the point
A coincides with the origin of the
orthogonal coordinate lines on the
membrane with Ru and Rv being
their curvature radii and pin,
pout are the inner, respectively
the outer pressures, the work
W needed for the infinitesimal
expansion of ABCD with sides
u and v to the quadrangle ÃB̃C̃ D̃
with sides u + δu and v + δv
(δu and δv are their respective
infinitesimal increments) is given

by the expressionI. Mladenov & M.Hadzhilazova The Many Faces of Elastica
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by the expression

W = (pin − pout)Sδr = ∆pSδr = σ∆S

= σ[u(1 +
δr

Ru
)v(1 +

δr

Rv
)− uv ] = σ(

1

Ru
+

1

Rv
)uvδr

= σ(
1

Ru
+

1

Rv
)Sδr

and therefore
∆p = 2σH (1)

where δr is the infinitesimal displacement of the membrane under
the pressure difference ∆p = pin − pout, σ is the surface tension,
and the equation (2) bears the name Laplace-Young equation.
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Tensions and Geometry
Membrane Geometry

Our membrane will be modeled by a surface of revolution about
the z-axis generated by a profile curve (r(s), z(s)) in the (first
quadrant of the) xz-plane (where s is the arclength parameter and
we take z(s) to increase with increasing s: z(s) rising from the
x-axis and meeting the z-axis orthogonally). This surface has a
parameterization

x(s, v) = (r(s) cos v , r(s) sin v , z(s)) = r(s)e1(v) + z(s)e3(v)

where the unit radial vector is e1(v) = cos v i + sin v j and
e3(v) = k.
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We also take e2(v) = k× e1 = − sin v i + cos v j, the unit vector
along the parallels of revolution. A meridian r(s)e1(v̊) + z(s)k
(i.e., fixed v̊) has tangent vector t = r ′(s)e1(v̊) + z ′(s)k, where
the primes denote differentiation with respect to s. Because we
parametrize the meridian by arclength, the tangent vector has unit
length, i.e., r ′(s)2 + z ′(s)2 = 1. Hence, we can define

r ′(s) = − sin θ(s), z ′(s) = cos θ(s) (3)

where θ(s) is the angle between t and k, and write
t = − sin θ e1 + cos θ k. Note that, since we assume z increases
with s, t has an upward component. Hence, the angle θ is positive
to the “left” of k in the plane of the profile curve.
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There is also a unit normal n(s, v) to the surface x(s, v)
determined as follows: the unit vector t and the vector xv = r(s)e2

give a basis for the tangent plane to x(s, v), so

n(s, v) =
t× xv
|t× xv |

= − cos θ(s) e1(v)− sin θ(s) k

is the desired unit normal. For a surface of revolution
parameterized in the form (h(s) cos v , h(s) sin v , g(s)) and unit
normal specified above, we know (see Oprea [2007, Section 3.3.3]
that the principal curvatures are given by

kµ =
g ′′h′ − g ′h′′

(g ′2 + h′2)3/2
, kπ =

g ′

h(g ′2 + h′2)1/2
· (4)
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The subscript µ denotes that kµ is the curvature of the meridian
(given by the intersection of the plane determined by t and n at
any point and x). The subscript π denotes that kπ is the curvature
given by the intersection of the plane determined by xv and n at
any point and x. For our surface x(s, v),we have g = z and h = r ,
so we obtain

kµ =
z ′′r ′ − z ′r ′′

1
=

(−r ′r ′′
z ′

)
r ′ − z ′r ′′ =

−r ′′
z ′

=
cos θ θ′

cos θ
= θ′

where we have used r ′(s)2 + z ′(s)2 = 1 and r ′r ′′ + z ′z ′′ = 0 (by
differentiating the first equation). We also obtain

kπ =
z ′

r
=

cos θ

r
·

These principal curvatures will help us later on to understand the
crucial interactions between tensions and geometry.
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There are three possible tensions to consider: the meridian stress
σm in the direction t, the circumferential (or hoop) stress σc in the
direction e2 and the shear stress. As argued in Irvine [1981], for
membranes that are surfaces of revolution, shear stresses are zero
due essentially to symmetry about an axis. These internal tensions
are given in units of force per unit length. An inflated membrane
has an external pressure p(s)n̄(s, v)− w(s)k, where n̄ = −n is the
outward normal, the pressure p(s) depends only on the meridian
parameter s by symmetry about the z-axis and w(s) is a weight
density associated to the membrane itself. Note that pressure
pushes the membrane outward normally while weight is directed
downward as usual. Consider a patch on the membrane (see
Fig. 2) with parameter bounds s̊ ≤ s and v̊ ≤ v . The patch is in
equilibrium, so the total force acting on it is zero.
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Figure: A patch on an axisymmetric membrane which is in equilibrium
under various forces acting on it.
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Instead of writing things componentwise, we use vector notation
and write

0 =

∫ v

v̊
σm(s)r(s)t(s, u) du −

∫ v

v̊
σm(s̊)r(s̊)t(s̊, u) du

+

∫ s

s̊
σc(t)e2(v) dt −

∫ s

s̊
σc(t)e2(v̊) dt

+

∫ s

s̊

∫ v

v̊
p(t)r(t)n̄(t, u) du dt −

∫ s

s̊

∫ v

v̊
w(t)r(t)k du dt.

Now take ∂/∂s on both sides to obtain

0 =

∫ v

v̊

∂

∂s
(σm(s)r(s)t(s, u)) du + σc(u)e2(v)− σc(u)e2(v̊)

+

∫ v

v̊
p(u)r(u)n̄(s, u) du −

∫ v

v̊
w(s)r(s)k du.
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Take ∂/∂v on both sides of this equation to obtain

0 =
∂

∂s
(σm(s)r(s)t(s, v))−σc(s)e1(v)+p(s)r(s)n̄(s, v)−w(s)r(s)k.

(5)
Now we can project onto t and n̄ by dotting with t and n̄
respectively. We use several facts: t · ∂t/∂s = 0, e1 · t = − sin θ
and

∂

∂s
(σmrt) · t + (σmrt) · ∂t

∂s
=

∂

∂s
(σmrt · t)

=
∂

∂s
(σmr) + 2(σmr)

∂t

∂s
· t

∂

∂s
(σmrt) · t =

∂

∂s
(σmr).
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Therefore we have the equations

0 =
∂

∂s
(σmr) + σc sin θ − wr cos θ

(6)
∂

∂s
(σmr) = −σc sin θ + wr cos θ.

Dotting with n̄ gives (using ∂t/∂s = −θ′n̄)

0 =
∂

∂s
(σmrt) · n̄− σce1 · n̄ + pr n̄ · n̄− wrk · n̄

0 = −σmrθ′ − σc cos θ + pr − wr sin θ (7)

σmrθ
′ = pr − σc cos θ − wr sin θ.
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Let us consider the case where the weight of the membrane is
negligible, that is, w ≡ 0. Recall that kµ = θ′ and kπ = cos θ/r .
From (7), we get

σmθ
′ +

σc
r

cos θ = p

σmkµ + σckπ = p.

If we define the radii of curvature by rµ = 1/kµ and rπ = 1/kπ,
then we have a version of the Laplace-Young equation (see for
instance Oprea [2000])

σm
rµ

+
σc
rπ

= p. (8)
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Remark. Of course, when w 6= 0, we then have

σm
rµ

+
σc
rπ

= p − w

r
sin θ. (9)

Now, when w = 0, the equation (6) becomes ∂
∂s (σmr) = −σc sin θ.

Since r ′ = − sin θ, a solution is given by

σm = σc = σ = constant.

Put this in the Laplace-Young equation (8) to get

σ

(
θ′ +

cos θ

r

)
= p,

1

2
(kµ + kπ) =

1

2

p

σ
, H =

1

2

p

σ

where H is the mean curvature of the membrane. If the pressure p
is constant, then H is constant as well and the membrane is a
surface of Delaunay (see Oprea [2000]).
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It is easy to conclude also that when p is still constant, but
σm 6= σc the equation (8) defines the so called anisotropic
Delaunay surfaces, and the reader is referred for more details on
their subject to Koiso & Palmer [2008].
Finally, if p = 0 and σm 6= σc , one ends with the quite interesting
class of the linear Weingarten surfaces Mladenov & Oprea [2003]
and Lopez [2008].
Consider (6) again (when w = 0) and suppose σc = 0 (this
situation is known in the literature as the natural shape of the
ballon - see Baginski & Winker [2004] and Baginski [2005]),
p = α, constant. Then σmr = β is a constant as well and
σm = β/r . From equation (7), we get (using r ′ = − sin θ)
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β

r
rθ′ = αr

βθ′ = αr

θ′ =
α

β
r

2r ′θ′ = 2
α

β
rr ′

−2 sin θθ′ = 2
α

β
rr ′

2(cos θ)′ =
α

β
(r2)′

2 cos θ =
α

β
r2 + d .
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The case w = 0

From our assumptions that the profile curve rises from the OX -axis
and goes to the OZ -axis orthogonally, we see that θ = π/2 exactly
when r = 0. Hence, d = 0. Therefore, we have

2
cos θ

r
=
α

β
r = θ′

(10)
2kπ = kµ.

This condition will be explored in the next section. It describes the
Mylar balloon. We can thus say the following.
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Theorem

If a membrane with w = 0, constant pressure p and hoop stress
σc = 0 is a surface of revolution

x(s, v) = (r(s) cos v , r(s) sin v , z(s)) = r(s)e1(v) + z(s)e3(v)

then 2kπ = kµ, that is, the membrane is a Mylar balloon (see
Section ??).
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Tensions and Geometry
Shapes and the Corresponding Surfaces

In the period between 1960 and 1970 J. Smalley did an extensive
work on axisymmetric ballon shapes and implement these models
on a digital computer.
As most of Smalley’s considerations were of numerical origin it
deserve to look for those models possesing analytical solutions.
Despite that the system governing these shapes is highly nonlinear
we have been successful in finding a few exact solutions which are
presented below (see Popova et al [2006]).
These solutions have been found neglecting some parameters in
the equilibrium equations.
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Let us start with the case when we can neglect the film weight
contribution, i.e., we suppose that w(s) ≡ 0 and hence in such a
case we have instead the equations (6) and (7) the system

∂(σmr)

∂s
= −σc sin θ (11)

(σmr)θ′ = pr − σc cos θ. (12)

In order to be coherent with the geometrical relation (3), the first
equation in the system implies that the meridional and
circumferential stresses are constant and of the same magnitude,
i.e., σm = σc = σ = constant, while (12) specifies the mean
curvature of S, namely

H =
p

2σ
· (13)
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Delaunay Surfaces

If we can arrange that the hydrostatic pressure is also a constant,
i.e., p(u) = po = const, then we end up with a surface of constant
mean curvature

H =
po
2σ

= const. (14)

Delaunay [1841], has isolated this class of surfaces guided by a
genuine geometrical argument - all they are just the traces of the
foci of the non-degenerate conics when they roll along a straight
line in a plane (roulettes in French).
The complete list of Delaunay’s surfaces includes cylinders of
radius R and mean curvature H = 1/2R, spheres of radius R and
mean curvature H = 1/R, catenoids of mean curvature H = 0, and
nodoids and unduloids of constant non-zero mean curvatures.
Their profile curves are shown in Fig. 3.
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Fig. 4.3 The profile curves of Delaunay’s surfaces obtained by rolling the conics
listed below the horizontal line on it.

formed by the equations (4.10) and (4.11) which ensures the geometrical
relation

cos θ =
p̊r

2
+
C

r
(4.14)

where C is some integration constant. Combined with (4.2) this leads to the
equation

r′ = − sin θ = − 1

2r

√
−p̊2r4 + 4(1− p̊C)r2 − 4C2 (4.15)

in which the variables can be separated, i.e.,

2rdr√
−p̊2r4 + 4(1− p̊C)r2 − 4C2

= −ds. (4.16)

The unpleasant sign on the right hand side can be eliminated by going to a
new variable, say u = −s as we can measure the distance along the curve
just in two ways. Introducing additionally as a new variable ξ = r2 we end
up with the task for the evaluation of the elementary integral (on the left)
written below ∫

dξ√
(c2 − ξ)(ξ − a2)

=

∫
du = u+ φ (4.17)

where

a =
1−√1− 2p̊C

p̊
, c =

1 +
√

1− 2p̊C

p̊
and φ ∈ R (4.18)

is some integration constant.
After some calculations the result of integration can be written in the form

ξ(u) = r2(u) = [(c2 − a2) sinu+ (c2 + a2)]/2 (4.19)

in which the integration constant is omitted as it is inessential for our further
considerations.
In order to find the generating curve we have to solve also the second equation
in (4.2), which in view of the above notation reads

Figure: The profile curves of Delaunay’s surfaces obtained by rolling the
conics listed below the horizontal line on it.
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In this section we will derive the analytical description of the last
two and most interesting cases from the Delaunay’s list. We start
with the system formed by the equations (11) and (12) which
ensures the geometrical relation

cos θ =
p̊r

2
+

C

r
(15)

where C is some integration constant. Combined with (3) this
leads to the equation

r ′ = − sin θ = − 1

2r

√
−p̊2r4 + 4(1− p̊C )r2 − 4C 2 (16)

in which the variables can be separated, i.e.,

2rdr√
−p̊2r4 + 4(1− p̊C )r2 − 4C 2

= −ds. (17)
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Nodoids and Unduloids

The unpleasant sign on the right hand side can be eliminated by
going to a new variable, say u = −s as we can measure the
distance along the curve just in two ways. Introducing additionally
as a new variable ξ = r2 we end up with the task for the
evaluation of the elementary integral (on the left) written below

∫
dξ√

(c2 − ξ)(ξ − a2)
=

∫
du = u + φ (18)

where

a =
1−√1− 2p̊C

p̊
, c =

1 +
√

1− 2p̊C

p̊
and φ ∈ R (19)

is some integration constant.
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After some calculations the result of integration can be written in
the form

ξ(u) = r2(u) = [(c2 − a2) sin u + (c2 + a2)]/2 (20)

in which the integration constant is omitted as it is inessential for
our further considerations.
In order to find the generating curve we have to solve also the
second equation in (3), which in view of the above notation reads

dz

dr
= − tan θ = − p̊r2 + 2C√

(c2 − r2)(r2 − a2)
(21)

and, therefore

z(r) = −
∫

(p̊r2 + 2C )dr√
(c2 − r2)(r2 − a2)

· (22)
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The integral on the right hand side can be uniformized by
performing the change

r(t) = cdn(t, k) (23)

where dn(t, k) is one of the Jacobian elliptic function of the
argument t and the elliptic module k. Choosing k to be√
c2 − a2/c we get

z(t) = cp̊

∫
dn2(t, k)dt +

2C

c

∫
dt (24)

and consequently

z(t) = cp̊E (am(t, k), k) +
2C

c
F (am(t, k), k) . (25)
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Finally, equations (20) and (23) will be compatible if the natural
parameter u and the uniformizing parameter t are related by the
equation

sin u = 1− 2sn2(t, k). (26)

Let us mention also that another pair of formulas in place of (23)
and (25) used for drawing unduloid and nodoid in Fig. 4 has been
derived following the variational approach in Mladenov &
Oprea [2003a].

I. Mladenov & M.Hadzhilazova The Many Faces of Elastica



Chapter 4. Surface Tension and Equilibrium

Tensions and Geometry
Intrinsic Equation of the Profile Curves of Delaunay
Surfaces

For some reasons (including typographical ones) it will be useful to
exchange slightly the notation as follows

H =
po
2σ

= λ = constant (27)

and C = µ, so that equation (15) takes the form

cos θ = λr +
µ

r
· (28)

The later can be recognized as the Gauss map of the Delaunay
surfaces (see Eells [1987]). Without any loss of generality we can
assume that the constant λ is a strictly positive number relying
either to physical experiments with membranes and balloons or
taking into account the mathematical fact that r ≡ r(s) is always
positive and that we can measure θ ≡ θ(s) only in two ways -
clockwise or counterclockwise. The case when λ ≡ 0 will be
treated separately below.
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Tensions and Geometry
Intrinsic Equation of the Profile Curves of Delaunay
Surfaces

Differentiating consecutively (28) with respect to s we get

θ′ = λ− µ

r2
(29)

and

θ′′ = −2µ

r3
sin θ. (30)

Taking into account that θ′(s) coincides with the curvature
κ ≡ κ(s) = κµ(s) of the profile curve of the surface in the XOZ
plane the equation (30) can be rewritten into the form

κ′ = −2(λ− κ)

√
λ− κ
µ
− (2λ− κ)2 (31)

which is just the intrinsic equation (Mladenov et al [2008])of the
meridional curve we have sought.
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Tensions and Geometry
Intrinsic Equation of the Profile Curves of Delaunay
Surfaces

As before, the minus sign in front of (31) suggests again to change
the independent variable, i.e., s = −u. Respectively, the solution
to equation (31) is

κ(u) = λ
1− 4λµ+

√
1− 4λµ sin(2λu)

1− 2λµ+
√

1− 4λµ sin(2λu)
, −∞ ≤ µ ≤ 1

4λ
(32)

which further implies (via (29)) that

r(u) =

√
1− 2λµ+

√
1− 4λµ sin(2λu)

λ
√

2
· (33)
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Tensions and Geometry
Intrinsic Equation of the Profile Curves of Delaunay
Surfaces

Integrating the second equation in (3) (in conjunction with (28)
and (33)) we obtain immediately

z(u) =
µ

m(λ, µ)
F (λu − π

4
, k) +

m(λ, µ)

λ
E (λu − π

4
, k) (34)

where the numerical factors are given by the expressions

m(λ, µ) =

√
1− 2λµ+

√
1− 4λµ√

2
, k =

√
2
√

1− 4λµ

1− 2λµ+
√

1− 4λµ
(35)

while F (ϕ, k) and E (ϕ, k) denote the so called incomplete elliptic
integrals of the first, respectively second kind which are functions
of their argument ϕ and the parameter k is known as an elliptic
modulus.
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Tensions and Geometry
Intrinsic Equation of the Profile Curves of Delaunay
Surfaces

Let us consider also the case when the differential hydrostatic
pressure across the membrane vanishes, i.e., λ ≡ 0. In that case
the intrinsic equation (31) reduces to

κ̃′ = 2κ̃

√
− κ̃
µ
− κ̃2 (36)

and its solution is
κ̃(u) = − µ

u2 + µ2
· (37)

This time (29) and (28) produce the parameterization of the
catenoid

r̃(u) =
√
u2 + µ2, z̃(u) = µLn

(
u +

√
u2 + µ2

)
(38)

drawn in Fig. 4.
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Let us consider also the case when the differential hydrostatic pressure across
the membrane vanishes, i.e., λ ≡ 0. In that case the intrinsic equation (4.30)
reduces to

κ̃′ = 2κ̃

√
− κ̃
µ
− κ̃2 (4.35)

and its solution is
κ̃(u) = − µ

u2 + µ2
· (4.36)

This time (4.28) and (4.27) produce the parameterization of the catenoid

r̃(u) =
√
u2 + µ2, z̃(u) = µLn

(
u+

√
u2 + µ2

)
(4.37)

drawn in Fig. 4.4.

Fig. 4.4 The open parts of the cylinder, sphere, catenoid, unduloid and nodoid
shown here are drawn via the profile curves (4.32) and (4.33) or (4.37) and various
combinations of the parameters λ and µ.

4.3.3 Some Useful Formulas

Having the explicit form of the parameterization (4.32) and (4.33) or (4.37)
one can easily find any other geometrical characteristic of the surface S. It
is a general theorem in the classical differential geometry that for such a
purpose one needs to know only the first and the second fundamental forms
of the surface under consideration. Actually, we have already derived the
corresponding formulas for E,F,G,L and M and further direct computations
(in λ 6= 0 case) produce

N =
1 +
√

1− 4λµ sin(2λu)

2λ
(4.38)

κπ(s) = λ
1 +
√

1− 4λµ sin(2λu)

1− 2λµ+
√

1− 4λµ sin(2λu)
·

Figure: The open parts of the cylinder, sphere, catenoid, unduloid and
nodoid shown here are drawn via the profile curves (33) and (34) or (38)
and various combinations of the parameters λ and µ.
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Having the explicit form of the parameterization (33) and (34) or
(38) one can easily find any other geometrical characteristic of the
surface S. It is a general theorem in the classical differential
geometry that for such a purpose one needs to know only the first
and the second fundamental forms of the surface under
consideration. Actually, we have already derived the corresponding
formulas for E ,F ,G , L and M and further direct computations (in
λ 6= 0 case) produce

N =
1 +
√

1− 4λµ sin(2λu)

2λ
(39)

κπ(s) = λ
1 +
√

1− 4λµ sin(2λu)

1− 2λµ+
√

1− 4λµ sin(2λu)
·
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The formulas mentioned above allows an easy check that by taking

µ =
1

4λ
one indeed gets a cylinder, and that µ = 0 corresponds to

a sphere. The intermediate cases when 0 < µ <
1

4λ
generate

unduloids and those ones with µ < 0 lead to nodoids. If one is
interested in the solution of the inverse problem, i.e., how to find
the corresponding parameters λ, µ if the maximal rmax and minimal
rmin distances from the symmetry axis are given, one easily ends
with the conclusion that in the case of the unduloid these are

λ =
1

rmax + rmin
, µ =

rmaxrmin

rmax + rmin

(40)

rmax =

√
1− 2λµ+

√
1− 4λµ

λ
√

2
, rmin =

√
1− 2λµ−√1− 4λµ

λ
√

2
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and the respective nodoid with the same geometrical data can be
built with

λ =
1

rmax − rmin
, µ = − rmaxrmin

rmax − rmin
· (41)

The parameters for the cylinders and spheres are recovered directly
via (41) taking into account their geometry is specified respectively
by rmax = rmin in the first and rmax ∈ R+, rmin = 0 in the second
case.
For the catenoids (λ = 0) one has respectively E = 1, F = 0,

G = u2 + µ2 for the first, and L = − µ

u2 + µ2
, M = 0, N = µ for

the second fundamental form, while by µ = ±rmin one recovers the
explicit parameterization (38) of the surface.
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It was already mentioned that Delaunay starts with finding the
evolute C̃ of the sought profile curve C. In what follows we will
keep his notation as much as possible.
If ρ is the radius of the curvature of C and s̃ is the natural
parameter on its evolute C̃ by its very definition one has

ρ = c̊ − s̃ (42)

where c̊ is an arbitrary real parameter. Let n denotes the part of
the tangent T̃ to C̃ between M and its intersection with the
symmetry axis OX .The condition that the surface S obtained by

revolving C about OX has a constant mean curvature
1

2a
in which

a is another real parameter can be written as

1

ρ
+

1

n
=

1

a
· (43)
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Figure: The curve C and it’s evolute C̃.
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By expecting Fig. 5 one easily finds also that

n = z̃
ds̃

dz̃
+ c̊ − s̃ (44)

and therefore
1

c̊ − s̃
+

1

z̃ ds̃
dz̃ + c̊ − s̃

=
1

a
· (45)

Integrating the last equation one gets

z̃2 = α(c̊ − s̃)(2a− c̊ + s̃) (46)

where α is the integration constant.
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This equation can be solved for s̃ and after that the result
differentiated with respect to z̃ in order to obtain

dz̃

ds̃
= −α

√
a2 − z̃2/α

z̃
(47)

along with

dx̃

ds̃
=

√
1− (

dz̃

ds̃
)2 =

√
(1 + α)z̃2 − a2α2

z̃
· (48)

An inspection of (47) and (48) leads to the conclusion that in the
above expressions the constant α can take all positive values and

that in this case z̃ will vary in the interval [
aα√
1 + α

, a
√
α]. If α is

negative it can take values between −1 and 0 while |z̃ | can take

any value greater than − aα√
1 + α

· This means that in the last

case the evolute will have infinite branches. The two alternatives
just described will be considered below separately. They are
described in detail in Hadzhilazova & Mladenov [2009].
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Assuming that 0 < α ≤ ∞ and introducing

m2 =
a2α2

1 + α
, n2 = a2α, n2 > m2 (49)

equations (47) and (48) can be combined into the form

dx̃

dz̃
= −

√
(1 + α)z̃2 − a2α2

α
√

a2 − z̃2/α
= −

√
1 + α

α

√
z̃2 −m2

√
n2 − z̃2

· (50)

The last expression suggests that it can be uniformized via

z̃ =
m

dn(u, k)
, m =

aα√
1 + α

= aαk , k =
1√

1 + α
(51)

where dn(u, k) is one of the three Jacobian elliptic functions, u is
its argument and the parameter k is known as an elliptic modulus.
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Using relations (51) and equation (50) we have

x̃ = m(u − E (am(u, k), k)) (52)

where am(u, k) is Jacobi’s amplitude function, E (ψ, k) denotes the
so called incomplete elliptic integral of the second kind and the
integration constant is omitted. Taken together (51) and (52)
provide the explicit parameterization of the evolute C̃. Its involute,
i.e., the profile curve C of the Delaunay surface of constant mean

curvature
1

2a
can be found relying on direct geometrical relations

(or consulting some of the textbook on classical differential
geometry as Gray [1998] or Oprea [2000])

x = x̃ + ρ
dx̃

ds̃
, z = z̃ + ρ

dz̃

ds̃
· (53)
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By (42), (46-48) and (51) one easily find

ρ = a−
√

a2− z̃2

α
= a(1− k

cn(u, k)

dn(u, k)
)

(54)
dx̃

ds̃
= sn(u, k),

dz̃

ds̃
= − cn(u, k)

which taken together give the parameterization of the nodary

x [u] = m(u − E (am(u, k), k)) + a(1− k
cn(u, k)

dn(u, k)
)sn(u, k)

(55)

z [u] =
m

dn(u, k)
− a(1− k

cn(u, k)

dn(u, k)
)cn(u, k).

Both, the nodary C and its evolute C̃ are depicted in Fig. 6 for a
concrete values of the parameters α and a.
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Figure: The evolute C̃ of the nodary C generated with α = 2.333 and
a = 0.2 by (51), (52) and (55).
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Following the plan announced above we will consider in this section
the case when α belongs to the interval −1 < α < 0. Because the
treatment will be quite parallel to that of nodary the details will be
just outlined but in order to distinguish the cases we use in
respective formulas the bars which will reminiscent that we are
dealing with negative α. In this setting we will have

d˜̄x

ds̃
=

√
(1 + α)˜̄z2 − a2α2

˜̄z
,

d˜̄z

ds̃
=

√−α
√

˜̄z2 − a2α
˜̄z

(56)

and respectively

d˜̄x

d˜̄z
=

1√−α

√
(1 + α)˜̄z2 − a2α2

˜̄z2 − a2α
=

√
1 + α

−α

√
˜̄z2 − m̄2

˜̄z2 + n̄2
(57)

where

m̄2 =
a2α2

1 + α
, n̄2 = −a2α, m̄2 + n̄2 = − a2α

1 + α
· (58)
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This time the uniformization can be accomplished by dn and cn, i.e.,

˜̄z =
√
m̄2 + n̄2

dn(u, k̄)

cn(u, k̄)
=

√
−α

1 + α

dn(u, k̄)

cn(u, k̄)
(59)

k̄2 =
n̄2

m̄2 + n̄2
= 1 + α.

Doing this, we obtain

d˜̄x = −acn2(u, k̄)

sn2(u, k̄)
du (60)

and consequently

˜̄x = a

(
E (am(u, k̄), k̄) +

cn(u, k̄)dn(u, k̄)

sn(u, k̄)

)
(61)

in which case as before, the integration constant is omitted.
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Further on, it is easy to find also that

ρ̄ = a(1− 1

k̄

1

sn(u, k̄)
),

d˜̄x

ds̃
= k̄

cn(u, k̄)

dn(u, k̄)
,

d˜̄z

ds̃
=

√−α
dn(u, k̄)

(62)
which immediately gives

x̄ [u] = ˜̄x + ρ̄
d˜̄x

ds̃
= a(k̄ − 1

sn(u, k̄)
)

cn(u, k̄)

dn(u, k̄)

(63)

z̄ [u] = ˜̄z + ρ̄
d˜̄z

ds̃
=

a
√−α
k̄

(
dn(u, k̄)

sn(u, k̄)
+ a(k̄ − 1

sn(u, k̄)
)

1

dn(u, k̄)

)
.
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Figure: The evolute C̃ of the undulary C generated with α = 3.5 and
a = −0.6 by (59), (61) and (63).
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Remarks The generating curves of the nodoids and the unduloids
called by Eells [1987] nodary, respectively undulary and their
evolutes, have been found following the original Delaunay
construction. These curves are periodic along the symmetry axis
and have one local minimum and one local maximum in each
period and do not depend on the chosen point on the evolutes as
the constant c̊ disappears from all formulae. The parameterizations
(up to integration) found by Delaunay himself (cf Delaunay [1841])
are given below for a comparison with those derived here and
elsewhere (Mladenov [2002] and Hadzhilazova et al [2007a]), i.e.,

x̃ = − aα tanϕ√
1 + α− sin2 ϕ

+

∫ ϕ

0

aαdϕ

cos2 ϕ
√

1 + α− sin2 ϕ

(64)

z̃ =
aα√

1 + α− sin2 ϕ
, ϕ ∈ R
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Remarks parameterize the evolutes, and

x [ϕ] = a sinϕ− a tanϕ

√
1 + α− sin2 ϕ+

∫ ϕ

0

aαdϕ

cos2 ϕ
√

1 + α− sin2 ϕ

(65)

z [ϕ] = −a cosϕ+ a

√
1 + α− sin2 ϕ

do the same for the nodary and undulary. The parameters α and a
have the same meaning as specified before.
Finally, it can be easily realized that the integrals which appear in
Delaunay formulas exist only on restricted intervals on which the
evolute can be found.
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Thank you for attention!
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