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Motivation

Explicit formulas encode a relationship between

analytic properties of zeta and L-functions and

geometric, algebraic, arithmetic,. . . properties of the object to
which the function is associated.
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Motivation

Explicit formulas in number theory first appeared in the works
of Riemann and von Mangoldt.

The most famous among them is the explicit formula obtained
by von Mangoldt∑

pn≤x
log p = x −

∑
ρ

xρ

ρ
− ζ ′

ζ
(0)− 1

2
log
(
1− x−2

)
.

The sum on the left is taken over all prime powers, and the
sum on the right is taken over the non-trivial zeros of
Riemann zeta function.
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Motivation

Explicit formulas motivated Omar [4] to study the multiplicity
of the eventual zeros of the Dedekind zeta function ζK (s) of a
number field K

He prove an asymptotic formula for the multiplicity of
eventual zero at central point 1/2 and the first zero with
positive imaginary part, assuming the generalized Riemann
hypothesis (GRH).

In 2010, Smajlović [6] and in 2011, Odžak and Smajlović [2]
prove the explicit formula for functions in the Selberg class
and its generalizations.

The explicit formula motivates the study of properties of
certain special zeros of functions in the Selberg class.
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Properties of the Selberg class

Introduction

The behaviour of zeta functions in the critical strip has
received a lot of attention since the first proof of the prime
number theorem.

Special values, especially the value at the central point
s = 1/2 is an important property and subject of intensive
study.

It arose in connection with the Birch and Swinnerton-Dyer
conjecture.
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Definition of the Selberg class

In 1989, Selberg [5] defined a general class of Dirichlet series
having

an Euler product,

analytic continuation and

a functional equation of Riemann type (plus some side
conditions).
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Definition of the Selberg class

The Selberg class of L-functions, denoted by S,

consists of the
Dirichlet series

F (s) =
∞∑
n=1

aF (n)

ns
,

which satisfy the following axioms:
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Definition of the Selberg class

(1) (Dirichlet series) The Dirichlet series converges absolutely for
<(s) > 1.

(2) (Analytic continuation) There exists an integer m ≥ 0 such
that the function (s − 1)mF (s) is entire function of finite
order. The smallest such number is denoted by mF and called
the polar order of F .

(3) (Functional equation) The function F satisfies the functional
equation ΦF (s) = wΦF (1− s̄), where

ΦF (s) = F (s)Qs
F

∏r
j=1 Γ(λjs + µj),

with QF > 0, r ≥ 0, λj > 0, |w | = 1, <(µj) ≥ 0, j = 1, . . . , r .

(4) (Ramanujan hypothesis) For every ε > 0 we have aF (n)� nε.

(5) (Euler product) log F (s) =
∑∞

n=1
bF (n)
ns , where bF (n) = 0 for

all n 6= pm with m ≥ 1 and p prime, and bF (n)� nθ for some
θ < 1/2.
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Some functions in S

Some examples of members of S are:

The Riemann zeta function ζ(s),

The shifted Dirichlet L-functions L(s + iθ, λ), where λ is a
primitive Dirichlet character (mod q), q > 1 and θ is real
number,

ζK (s), the Dedekind zeta function of an algebraic number
field K .

LK (s, χ), the Hecke L-function to a primitive Hecke character
χ mod f where f is an ideal of the ring of integers of K .
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The extended Selberg class S]

An extended Selberg class S] is a class of functions satisfying
axioms (1), (2) and (3).

It is believed that the class S] contains all L-functions of the
interest for the number theory.

Clearly, S] ⊃ S.
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Class S][

Odžak and Smajlović introduced in [2] the class S][ of
functions satisfying axioms (1), (2) and the two following
axioms:

(3’) (Functional equation) The function F satisfies the functional
equation ΦF (s) = wΦF (1− s̄), where

ΦF (s) = F (s)Qs
F

∏r
j=1 Γ(λjs + µj),

with QF > 0, r ≥ 0, λj > 0, |w | = 1,
<(µj) > − 1

4 ,<(λj + 2µj) > 0, j = 1, . . . , r and

Φc
F (s) = (s − 1)mF smF ΦF (s).

(5’) (Euler sum) The logarithmic derivative of the function F
possesses a Dirichlet series representation
F ′

F (s) = −
∑∞

n=1
cF (n)
ns , converging absolutely for <s > 1.

[2][Proposition 2.1] The class S is a subclass of S][.
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Odžak and Smajlović introduced in [2] the class S][ of
functions satisfying axioms (1), (2) and the two following
axioms:

(3’) (Functional equation) The function F satisfies the functional
equation ΦF (s) = wΦF (1− s̄), where

ΦF (s) = F (s)Qs
F

∏r
j=1 Γ(λjs + µj),

with QF > 0, r ≥ 0, λj > 0, |w | = 1,
<(µj) > − 1

4 ,<(λj + 2µj) > 0, j = 1, . . . , r and

Φc
F (s) = (s − 1)mF smF ΦF (s).

(5’) (Euler sum) The logarithmic derivative of the function F
possesses a Dirichlet series representation
F ′

F (s) = −
∑∞

n=1
cF (n)
ns , converging absolutely for <s > 1.

[2][Proposition 2.1] The class S is a subclass of S][.

Kajtaz H. Bllaca Geometry, Integrability and Quantization



Motivation
Introduction

Upper bounds of some special zeros of functions in the Selberg class
References

The Selberg class of functions
Modifications of the Selberg class
Properties of the Selberg class

Invariants in the Selberg class

An invariant (a numerical invariant) of a function F ∈ S] is
an expression defined in terms of the data of F which is
uniquely determined by F itself.

Some important invariants are:

H-invariants (n ≥ 0):

HF (n) = 2
r∑

j=1

Bn(µj)

λn−1j

,

where Bn(x) is the n-th Bernoulli polynomial.
Degree of F (n=0): HF (0) = 2

∑r
j=1 λj = dF

Conductor:

qF = (2π)dFQ2
F

r∏
j=1

λ
2λj

j . (1)
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Invariants in the Selberg class

An invariant (a numerical invariant) of a function F ∈ S] is
an expression defined in terms of the data of F which is
uniquely determined by F itself.

Some important invariants are:

H-invariants (n ≥ 0):

HF (n) = 2
r∑

j=1

Bn(µj)

λn−1j

,

where Bn(x) is the n-th Bernoulli polynomial.
Degree of F (n=0): HF (0) = 2

∑r
j=1 λj = dF

Conductor:

qF = (2π)dFQ2
F

r∏
j=1

λ
2λj

j . (1)
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Explicit formula for functions in S][

The crucial tool for deriving main results is the explicit formula for
functions in the Selberg class and its generalizations, applied to
suitably constructed test functions.
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Explicit formula for functions in S][

Theorem 1.

[6, Theorem 3.1], [2, Proposition 2.2] Let a regularized function
G satisfy the following conditions:

1. G ∈ φBV (R) ∩ L1(R).

2. G (x)e(1/2+ε)|x | ∈ φBV (R) ∩ L1(R), for some ε > 0.

3. G (x) + G (−x)− 2G (0) = O(| log |x ||−α), as x → 0, for some
α > 2.

Let g(x) = G (− log x), for x > 0, Gj(x) = G (x) exp
(
ix=µj
λj

)
and

Z (F ) the set of all non-trivial zeros of F ∈ S][.
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Explicit formula for functions in S][

Theorem 1. continued

Then, the formula

lim
T→∞

∑
ρ∈Z(F )
|=ρ|≤T

ord(ρ)M 1
2
g(ρ)

= mFM 1
2
g(0) +mFM 1

2
g(1)

−
∑
n

cF (n)

n
1
2

g(n)−
∑
n

cF (n)

n
1
2

g(1/n) + 2G(0) logQF

+
r∑

j=1

∞∫
0

[
2λjGj(0)

x
−

exp((1− λj

2
−<µj)

x
λj
)

1− e
−x
λj

(Gj(x) + Gj(−x))

]
e
−x
λj dx

(2)

holds true for an arbitrary function F ∈ S][, where M 1
2
g denotes the translate

by 1/2 of the Mellin transform of the function g .
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Explicit formula for functions in S][

Corollary 1

Let G be an even regularized function satisfying conditions of Theorem 1.
then, the formula

lim
T→∞

∑
ρ∈Z(F )
|=ρ|≤T

ord(ρ)M 1
2
g(ρ)

= mFM 1
2
g(0) +mFM 1

2
g(1)− 2

∑
n

<(cF (n))
n

1
2

g(1/n) + 2G(0) logQF

+ 2
r∑

j=1

∞∫
0

[
2λjG(0)

x
−

exp((1− λj

2
−<µj)

x
λj
)

1− e
−x
λj

G(x) cosh
( ix=µj

λj

)]
e
−x
λj dx

(3)

holds true for an arbitrary function F ∈ S][.
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Multiplicity of the zero at central point

Assuming generalised Riemann hypothesis (GRH) we prove the
following

Theorem 2.

Let R be the multiplicity of the eventual zero at the central point
1/2 of function F ∈ S][ such that <(cF (n)) ≥ 0 and let

B(F ) = 2
r∑

j=1

λj

(
<
(

Ψ
(λj

2
+ µj

))
− log(2πλj)

)
.

a) If qF > e, then

R ≤ (4mF + 1) log qF + B(F )

2 log log qF
.

Kajtaz H. Bllaca Geometry, Integrability and Quantization



Motivation
Introduction

Upper bounds of some special zeros of functions in the Selberg class
References

Explicit formula for functions in S][
Multiplicity of the zero at central point
Location of the first zero with positive imaginary part

Multiplicity of the zero at central point

Assuming generalised Riemann hypothesis (GRH) we prove the
following

Theorem 2.

Let R be the multiplicity of the eventual zero at the central point
1/2 of function F ∈ S][ such that <(cF (n)) ≥ 0 and let

B(F ) = 2
r∑

j=1

λj

(
<
(

Ψ
(λj

2
+ µj

))
− log(2πλj)

)
.

a) If qF > e, then

R ≤ (4mF + 1) log qF + B(F )

2 log log qF
.
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Multiplicity of the zero at central point

Theorem 2. continued

b) If 0 < qF ≤ e, then

i) R = 0, for mF = 0,
ii)

R ≤ 4mF e
W
(

B(F )+1
4emF

)
+1

+ B(F ) + 1

2
(
W
(

B(F )+1
4emF

)
+ 1
) ,

for 4mF + B(F ) + 1 > 0,

where mF is the polar order of F , qF is the conductor of F , λj , µj
are given as in axiom (3’) and W denotes the Lambert function.
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Multiplicity of the zero at central point

As an immediate consequence of the above theorem, in the case
when the conductor of function F is small, we get the following

Corollary 2

Let F ∈ S][ be such that <(cF (n)) ≥ 0. Assume also that the
conductor, qF of F is less then or equal to e and that F is
holomorphic. Then, F (1/2) 6= 0, i.e. F is non-vanishing at the
central point.
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Multiplicity of the zero at central point

As an immediate consequence of the above theorem, in the case
when the conductor of function F is small, we get the following

Corollary 2

Let F ∈ S][ be such that <(cF (n)) ≥ 0. Assume also that the
conductor, qF of F is less then or equal to e and that F is
holomorphic. Then, F (1/2) 6= 0, i.e. F is non-vanishing at the
central point.
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Multiplicity of the zero at central point

Remark

From the proof of the Theorem 2. it is easy to see that the
statement of theorem holds true under slightly less restrictive
assumptions on <(cF (n)). Namely, it is sufficient to assume that∑

n

<(cF (n))

n
1
2

gT (1/n) ≥ 0.
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Multiplicity of the zero at central point

Since automorphic L-functions L(s, π) attached to irreducible
unitary automorphic representations of GLN(Q), belongs to the
class S][,

we can apply result of Theorem 2. to get the following
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Multiplicity of the zero at central point

Since automorphic L-functions L(s, π) attached to irreducible
unitary automorphic representations of GLN(Q), belongs to the
class S][, we can apply result of Theorem 2. to get the following
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Multiplicity of the zero at central point

Corollary 3

Let R be the multiplicity of the eventual zero at the central point
1/2 of L(s, π) such that <(cn(π)) ≥ 0 and let

B(L) =
N∑
j=1

<
(

Ψ
(1

4
+

1

2
κj(π)

))
− N log π.

a) If Q(π) > e then

R ≤ (4mL + 1) logQ(π) + B(L)

2 log logQ(π)
.

where W denotes the Lambert function.
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Multiplicity of the zero at central point

Corollary 3- continued

b) If 0 < Q(π) ≤ e then

i) R = 0, when N > 1 or N = 1 and π 6= Id .
ii)

R ≤ 4mLe
W
(

1−γ−π/2−log 8π
4e

)
+1 + 1− γ − π/2− log 8π

2
(
W
(

1−γ−π/2−log 8π
4e

)
+ 1
) .

where W denotes the Lambert function.
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Multiplicity of the zero at central point

Specially, if L(s, π) 6= ζ(s) is automorphic L-function with analytic
conductor Q(π) less than or equal to e, then L(s, π) is
non-vanishing at central point s = 1/2.
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Location of the first zero with positive imaginary part

In this section we provide an upper bound for the height of the
first zero with positive imaginary part of the function F in S][ such
that <(cF (n)) ≥ 0 for all n ∈ N.

Theorem 3.

Let h be the height of the first zero with imaginary part different
from zero of the function F ∈ S][. Assume that F satisfies axiom
(5) of the Selberg class and <(cF (n)) ≥ 0. Then, for qF > e we
have the bound

h ≤ max

{
16
√
2

[
(4mF+1) log qF+B(F )

]
π log qF log log qF

, (2θ+1)π√
2 log[log qF /16(KF+δ)]

}
.

Here qF is the conductor of F , mF is the polar order of F , B(F ) is
given in Theorem 2, KF = CF

2θ+1 , θ < 1/2 stemmed from axiom (5)
of the Selberg class and δ > 0.
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√
2

[
(4mF+1) log qF+B(F )
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π log qF log log qF

, (2θ+1)π√
2 log[log qF /16(KF+δ)]
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.

Here qF is the conductor of F , mF is the polar order of F , B(F ) is
given in Theorem 2, KF = CF

2θ+1 , θ < 1/2 stemmed from axiom (5)
of the Selberg class and δ > 0.
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Location of the first zero with positive imaginary part

In the case when F ∈ S with non-negative coefficients, we can get
sharper upper bound for the height of the first zero of F with
positive imaginary part, as stated in the following

Theorem 4.

Let h be the height of the first zero with imaginary part different
from zero of the function F ∈ S and F (1 + it) 6= 0 for all t ∈ R
such that aF (n) ≥ 0 for all n ∈ N. Then, for qF > e we have the

bound h ≤ max

{
16
√
2

[
(4mF+1) log qF+B(F )

]
π log qF log log qF

, π√
2 log[log qF /16(mF+τ)]

}
,

where qF is as in (1), mF is defined in axiom (2) of the Selberg
class, B(F ) is given in Theorem 2 and τ > 0.
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Location of the first zero with positive imaginary part

In the case when F ∈ S with non-negative coefficients, we can get
sharper upper bound for the height of the first zero of F with
positive imaginary part, as stated in the following

Theorem 4.

Let h be the height of the first zero with imaginary part different
from zero of the function F ∈ S and F (1 + it) 6= 0 for all t ∈ R
such that aF (n) ≥ 0 for all n ∈ N. Then, for qF > e we have the

bound h ≤ max

{
16
√
2

[
(4mF+1) log qF+B(F )

]
π log qF log log qF

, π√
2 log[log qF /16(mF+τ)]

}
,

where qF is as in (1), mF is defined in axiom (2) of the Selberg
class, B(F ) is given in Theorem 2 and τ > 0.
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Location of the first zero with positive imaginary part

Assuming GRH for automorphic L-functions and applying these
results for L(s, π) ∈ S we prove
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Location of the first zero with positive imaginary part

Corollary 4

Let h be the height of the first zero with imaginary part different
from zero of the function L(s, π). Assume that L(s, π) satisfies
axiom (5) of the Selberg class and <(cn(π)) ≥ 0, where
cn(π) = bn(π) log n. Then, for Q(π) > e we have the bound

h ≤ max

{
16
√
2

[
logQ(π)+B(L)

]
π logQ(π) log logQ(π) ,

(2θ+1)π√
2 log[logQ(π)/16(KL+δ)]

}
.

Here mL is defined in axiom (2) of the Selberg class, B(L) is given
in Corollary 3, KL = CL

2θ+1 , θ < 1/2 and δ > 0.
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