Recent results in the Hamiltonian reduction approach to integrable many-body systems

 Poisson-Lie analogues of spin Sutherland models

 Poisson-Lie analogues of spin Sutherland models}

László Fehér, University of Szeged and Wigner RCP, Budapest
Kazhdan, Kostant and Sternberg (1978): Derived the trigonometric Sutherland model by Hamiltonian reduction of free motion on $T^{*} \cup(n)$.

Analogous reduction of cotangent bundle of any compact simple Lie group, at arbitrary moment map value, leads to spin Sutherland model.

LF and Klimčík (2009): Poisson-Lie analogue of the KKS reduction of $T^{*} \cup(n)$ gives the real, trigonometric Ruijsenaars-Schneider model.

In this talk, based on arXiv:1809.01529, I present generalization of spin Sutherland models that descend from Poisson-Lie analogue of $T^{*} G$ for any compact simple Lie group G.

Plan: I start with a recall of the reduction of $T^{*} G$, then present its Poisson-Lie analogue. I shall finish with comments on related results, consequences, generalizations and open problems.

Consider realification of complex simple Lie algebra: $\mathcal{G}^{\mathbb{C}}=\mathcal{G}+\mathcal{B}$.
Compact: $\mathcal{G}=\operatorname{span}_{\mathbb{R}}\left\{\left(E_{\alpha}-E_{-\alpha}\right), \mathrm{i}\left(E_{\alpha}+E_{-\alpha}\right), \mathrm{i} T_{\alpha_{k}} \mid \alpha \in \Phi^{+}, \alpha_{k} \in \Delta\right\}$

$$
\text { 'Borel': } \mathcal{B}=\operatorname{span}_{\mathbb{R}}\left\{E_{\alpha}, \mathrm{i} E_{\alpha}, T_{\alpha_{k}} \mid \alpha \in \Phi^{+}, \alpha_{k} \in \Delta\right\}
$$

Isotropic subalgebras w.r.t. bilinear form

$$
\langle X, Y\rangle:=\operatorname{Im}(X, Y), \forall X, Y \in \mathcal{G}^{\mathbb{C}}, \text { with Killing form }(,) \text { of } \mathcal{G}^{\mathbb{C}}
$$

Starting phase space: $M:=T^{*} G \times \mathcal{O}$ with coadjoint orbit \mathcal{O} of compact Lie group G. Natural Poisson maps

$$
J_{L}: M \rightarrow \mathcal{G}^{*}, \quad J_{R}: M \rightarrow \mathcal{G}^{*}, \quad J_{\mathcal{O}}: M \rightarrow \mathcal{G}^{*}
$$

Reduced phase space: $M_{\text {red }}:=\mu^{-1}(0) / G \quad$ with $\quad \mu:=J_{L}+J_{R}+J_{\mathcal{O}}$.

$$
M_{\mathrm{red}} \text { contains dense open subset } M_{\mathrm{red}}^{\mathrm{reg}}=T^{*} \mathbb{T}^{o} \times \mathcal{O}_{0} / \mathbb{T}
$$

where \mathbb{T}^{o} is interior of a Weyl alcove in the maximal torus $\mathbb{T}<G$.

Using $\mathcal{G}^{*} \simeq \mathcal{G}$ and product map $\pi_{G} \times J_{R} \times J_{\mathcal{O}}$ identify

$$
M \equiv G \times \mathcal{G} \times \mathcal{O}=\{(g, J, \xi)\}, \text { symplectic form: } \omega=-d\left(J, g^{-1} d g\right)+\omega_{\mathcal{O}}
$$

Moment map μ generates 'conjugation action' of G :

$$
A_{\eta}(g, J, \xi)=\left(\eta g \eta^{-1}, \eta J \eta^{-1}, \eta \xi \eta^{-1}\right), \quad \forall \eta \in G
$$

Every element of $\mu^{-1}(0)$ is G-equivalent to a triple $\left(Q^{-1}, J, \xi\right)$ with Q from closure of $\mathbb{T}^{o} \subset \mathbb{T}$. Assuming that $Q=e^{\mathrm{i} q}$ is regular, one can solve the constraint, $e^{-\mathrm{i} q} J e^{\mathrm{i} q}-J=\xi$, as follows:

$$
\xi=\sum_{\alpha \in \Phi^{+}}\left(\xi_{\alpha} E_{\alpha}-\xi_{\alpha}^{*} E_{-\alpha}\right), \quad J=-\mathrm{i} p+\sum_{\alpha \in \Phi^{+}}\left(J_{\alpha} E_{\alpha}-J_{\alpha}^{*} E_{-\alpha}\right)
$$

where $\mathrm{i} p \in \mathcal{T}$ is arbitrary and $J_{\alpha}=\frac{\xi_{\alpha}}{e^{-\mathrm{i} \alpha(q)}-1}$. This gives the model

$$
M_{\mathrm{red}}^{\mathrm{reg}}=\mathbb{T}^{o} \times \mathcal{T} \times\left(\mathcal{O}_{0} / \mathbb{T}\right)=\left\{\left(e^{\mathrm{i} q}, \mathrm{i} p,[\xi]\right)\right\}, \quad \omega_{\mathrm{red}}=(d p \hat{,} d q)+\omega_{\mathcal{O}}^{\mathrm{red}}
$$

Free Hamiltonian $\mathcal{H}:=-\frac{1}{2}(J, J)$ reduces to

$$
\mathcal{H}_{\text {Suth }}\left(e^{\mathrm{i} q}, p,[\xi]\right)=\frac{1}{2}(p, p)+\frac{1}{2} \sum_{\alpha>0} \frac{1}{|\alpha|^{2}} \frac{\left|\xi_{\alpha}\right|^{2}}{\sin ^{2} \frac{\alpha(q)}{2}}
$$

In general, this represents a spin Sutherland model.

Sutherland dynamics is projection of 'free motion':

$$
g(t)=g(0) \exp (t J(0)), \quad J(t)=J(0), \quad \xi(t)=\xi(0)
$$

The 'kinetic energy' $\mathcal{H}=-\frac{1}{2}(J, J)$ belongs to Abelian Poisson algebra $C_{I}(M):=J_{R}^{*}\left(C^{\infty}\left(\mathcal{G}^{*}\right)^{G}\right)$. The free motion is degenerately integrable, because $C_{I}(M)$ Poisson commutes with each element of the Poisson algebra $C_{J}(M)$ generated by the components of J_{L}, J_{R} and $J_{\mathcal{O}}$.

Generically, integrability is inherited under Hamiltonian reduction.

$\left(\mathcal{G}\right.$ and \mathcal{B} yield two models of $\mathcal{G}^{*} ; \mathcal{G} \ni \xi \Longleftrightarrow \tilde{\xi} \in \mathcal{B}$ via $(\xi, X)=\langle\tilde{\xi}, X\rangle$, $\forall X \in \mathcal{G}$. In terms of constrained spin variable $\tilde{\xi}=\sum_{\alpha \in \Phi+} \tilde{\xi}_{\alpha} E_{\alpha}$

$$
\mathcal{H}_{\text {Suth }}\left(e^{\mathrm{i} q}, p,[\tilde{\xi}]\right)=\frac{1}{2}(p, p)+\frac{1}{8} \sum_{\alpha \in \Phi+} \frac{1}{|\alpha|^{2}} \frac{\left|\tilde{\xi}_{\alpha}\right|^{2}}{\sin ^{2} \frac{\alpha(q)}{2}}
$$

This will be convenient for comparison with the spin RS models.)

Heisenberg double [Semenov-Tian-Shansky, Alekseev-Malkin].

 Consider real Lie group $G^{\mathbb{C}}$ and its subgroups G and B, corresponding to $\mathcal{G}^{\mathbb{C}}=\mathcal{G}+\mathcal{B}$. Every element $K \in G^{\mathbb{C}}$ admits Iwasawa decompositions$$
K=b_{L} g_{R}^{-1}=g_{L} b_{R}^{-1}, \quad b_{L}, b_{R} \in B, g_{L}, g_{R} \in G
$$

$G^{\mathbb{C}}$ is equipped with symplectic form

$$
\Omega_{+}=\frac{1}{2}\left\langle d b_{L} b_{L}^{-1} \hat{,} d g_{L} g_{L}^{-1}\right\rangle+\frac{1}{2}\left\langle d b_{R} b_{R}^{-1} \hat{,} d g_{R} g_{R}^{-1}\right\rangle
$$

Define maps \wedge_{L}, \wedge_{R} from $G^{\mathbb{C}}$ to B and maps $\bar{三}_{L}, \bar{三}_{R}$ from $G^{\mathbb{C}}$ to G by

$$
\wedge_{L}(K):=b_{L}, \quad \wedge_{R}(K):=b_{R}, \quad \bar{\Xi}_{L}(K):=g_{L}, \quad \bar{\Xi}_{R}(K):=g_{R}
$$

These are Poisson maps w.r.t. Poisson structure associated with Ω_{+} and multiplicative Poisson structures on B and on G.
G acts on B by dressing action, $\operatorname{Dress}_{\eta}(b):=\Lambda_{L}(\eta b)$, and dressing orbits $\left(\mathcal{O}_{B}, \Omega_{\mathcal{O}_{B}}\right)$ are symplectic leaves in B.

Reduction of free system on phase space (\mathcal{M}, Ω) :

$$
\mathcal{M}:=G^{\mathbb{C}} \times \mathcal{O}_{B}=\left\{(K, S) \mid K \in G^{\mathbb{C}}, S \in \mathcal{O}_{B}\right\}, \quad \Omega=\Omega_{+}+\Omega_{\mathcal{O}_{B}}
$$

$C_{I}(\mathcal{M}):=\wedge_{R}^{*}\left(C^{\infty}(B)^{G}\right)$ gives an Abelian Poisson algebra. Hamiltonian $\wedge_{R}^{*}(h) \in C_{I}(\mathcal{M})$ generates 'free' flow
$g_{R}(t)=\exp \left[t d^{L} h\left(b_{R}(0)\right)\right] g_{R}(0), b_{L}(t)=b_{L}(0), b_{R}(t)=b_{R}(0), S(t)=S(0)$.
This is a degenerately integrable system, since all functions of b_{L}, b_{R} and S are conserved $\left(K=b_{L} g_{R}^{-1}=g_{L} b_{R}^{-1}\right)$. They form the ring $C_{J}(\mathcal{M})$.

Here, derivative $d^{L} h(b) \in \mathcal{G}$ of any $h \in C^{\infty}(B)$ is defined by relation $\left\langle d^{L} h(b), X\right\rangle:=\left.\frac{d}{d s}\right|_{s=0} h(\exp (s X) b)$ for all $X \in \mathcal{B}$ and $b \in B$.

A Poisson action of G on \mathcal{M} is generated by non-Abelian moment map

$$
\begin{aligned}
& \wedge:= \wedge_{L} \wedge_{R} \wedge_{\mathcal{O}_{B}}: \mathcal{M} \rightarrow B \equiv G^{*}, \quad \text { for which } \wedge(K, S)=b_{L} b_{R} S \\
& \eta \in G \text { acts by } A_{\eta}(K, S)=\left(\eta K \equiv_{R}\left(\eta b_{L}\right), \text { Dress }_{\equiv_{R}\left(\eta b_{L} b_{R}\right)^{-1}}(S)\right) \\
& C_{I}(\mathcal{M}) \text { and } C_{J}(\mathcal{M})^{G} \text { descend to } \mathcal{M}_{\text {red }}:=\wedge^{-1}(e) / G
\end{aligned}
$$

Maximal torus $\mathbb{T}<G$ acts on \mathcal{O}_{B} by conjugations. Writing $S \in \mathcal{O}_{B}$ as $S=S_{0} S_{+}$with $S_{0} \in B_{0}, S_{+} \in B_{+}$, this action has moment map $S \mapsto \log \left(S_{0}\right) \in \mathcal{B}_{0}$. Imposing $S_{0}=e$, we obtain reduced dressing orbit

$$
\mathcal{O}_{B}^{\text {red }}=\left(\mathcal{O}_{B} \cap B_{+}\right) / \mathbb{T}
$$

We focus on dense open submanifold $\mathcal{M}^{\text {reg }}:=\equiv_{R}^{-1}\left(G^{\text {reg }}\right) \subset \mathcal{M}$, i.e., we assume that in $K=b_{L} g_{R}^{-1}$ we have $g_{R} \in G^{\text {reg }}$.

Main Theorem. The open dense subset $\mathcal{M}_{\text {red }}^{\text {reg }}=\left(\wedge^{-1}(e) \cap \mathcal{M}^{\text {reg }}\right) / G$ of $\mathcal{M}^{\text {red }}$ can be identified with

$$
T^{*} \mathbb{T}^{o} \times \mathcal{O}_{B}^{\text {red }}
$$

where $\mathbb{T}^{o} \subset \mathbb{T}$ is open Weyl alcove and $\mathcal{O}_{B}^{\text {red }}$ is reduced dressing orbit. The reduced symplectic structure reads $\Omega_{\text {red }}=\Omega_{T^{*} \mathbb{T}^{o}}+\Omega_{\mathcal{O}_{B}}^{\text {red }}$.

Crux of proof: $\mathcal{Z}:=\left\{(K, S) \mid \wedge(K, S)=e, \equiv_{R}(K) \in \mathbb{T}^{o}\right\}$ meets every G-orbit, and $\mathcal{M}_{\text {red }}^{\text {reg }}=\mathcal{Z} / \mathbb{T}$. With $b_{R}=b_{0} b_{+}=e^{p} b_{+}$and $g_{R}=Q$, the constraint becomes

$$
Q^{-1} b_{+}^{-1} Q b_{+} S=e
$$

$b_{0}=e^{p} \in B_{0}, Q \in \mathbb{T}^{o}$ and $S=S_{+} \in \mathcal{O}_{B} \cap B_{+}$are arbitrary, and b_{+}is determined by Q and S_{+}.

Some notations: Let θ denote the Cartan involution of $\mathcal{G}^{\mathbb{C}}=\mathcal{G}+\mathrm{i} \mathcal{G}$, and Θ the Cartan involution of $G^{\mathbb{C}}$. We write

$$
X^{\dagger}:=-\theta(X), \quad K^{\dagger}:=\Theta\left(K^{-1}\right) \quad \text { for } \quad X \in \mathcal{G}^{\mathbb{C}}, K \in G^{\mathbb{C}}
$$

Defining $\mathfrak{P}:=\exp (i \mathcal{G}) \subset G^{\mathbb{C}}$, one has G-equivariant diffeomorphism

$$
B \ni b \mapsto b b^{\dagger} \in \mathfrak{P}, \quad \text { with } G \text { acting on } \mathfrak{P} \text { by conjugations. }
$$

In this way $C^{\infty}(B)^{G}$ is turned into $C^{\infty}(\mathfrak{P})^{G}$, which is generated by the restrictions of the characters χ_{ρ} of the fundamental irreps of $G^{\mathbb{C}}$.

The 'main reduced Hamiltonians' descend from the characters. We define $H^{\rho} \in C^{\infty}(\mathcal{M})^{G}$ by

$$
H^{\rho}(K, S):=\operatorname{tr}_{\rho}\left(b_{R} b_{R}^{\dagger}\right):=c_{\rho} \operatorname{tr}\left(\rho\left(b_{R} b_{R}^{\dagger}\right)\right) \quad \text { with } \quad K=g_{L} b_{R}^{-1}
$$

(The constant c_{ρ} is chosen so that $c_{\rho} \operatorname{tr}\left(\rho\left(E_{\alpha}\right) \rho\left(E_{-\alpha}\right)\right)=2 /|\alpha|^{2}$, and we put $\operatorname{tr}_{\rho}(X Y Z):=c_{\rho} \operatorname{tr}(\rho(X) \rho(Y) \rho(Z))$ etc. $)$

Interpretation as spin R model: Constraint $Q^{-1} b_{+}^{-1} Q b_{+}=S_{+}^{-1}$,

$$
S_{+}=e^{\sigma}, \quad b_{+}=e^{\beta}, \quad \sigma=\sum_{\alpha>0} \sigma_{\alpha} E_{\alpha}, \quad \beta=\sum_{\alpha>0} \beta_{\alpha} E_{\alpha}, \quad Q=e^{\mathrm{i} q}
$$

Baker-Campbell-Hausdorff formula gives

$$
\exp \left(\beta-Q^{-1} \beta Q-\frac{1}{2}\left[Q^{-1} \beta Q, \beta\right]+\cdots\right)=\exp (-\sigma)
$$

β_{α} can be expressed in terms of σ and $e^{\mathrm{i} q}$:

$$
\beta_{\alpha}=\frac{\sigma_{\alpha}}{e^{-\mathrm{i} \alpha(q)}-1}+\sum_{k \geq 2} \sum_{\varphi_{1}, \ldots, \varphi_{k}} f_{\varphi_{1}, \ldots, \varphi_{k}}\left(e^{\mathrm{i} q}\right) \sigma_{\varphi_{1}} \ldots \sigma_{\varphi_{k}}
$$

where $\alpha=\varphi_{1}+\cdots+\varphi_{k}$ and $f_{\varphi_{1}, \ldots, \varphi_{k}}$ depends rationally on $e^{i q}$.
Therefore $H_{\mathrm{red}}^{\rho}=\operatorname{tr}_{\rho}\left(e^{p} b_{+} b_{+}^{\dagger} e^{p}\right)$ can be expanded as

$$
H_{\mathrm{red}}^{\rho}\left(e^{\mathrm{i} q}, p,[\sigma]\right)=\operatorname{tr}_{\rho}\left(e^{2 p}\left(1_{\rho}+\frac{1}{4} \sum_{\alpha>0} \frac{\left|\sigma_{\alpha}\right|^{2} E_{\alpha} E_{-\alpha}}{\sin ^{2}(\alpha(q) / 2)}+\mathrm{o}_{2}\left(\sigma, \sigma^{*}\right)\right)\right) .
$$

This can be called a spin RS type Hamiltonian.

By expanding $e^{2 p}$,
$H_{\mathrm{red}}^{\rho}\left(e^{\mathrm{i} q}, p,[\sigma]\right)=\operatorname{dim}_{\rho}+2 \operatorname{tr}_{\rho}\left(p^{2}\right)+\frac{1}{2} \sum_{\alpha>0} \frac{1}{|\alpha|^{2}} \frac{\left|\sigma_{\alpha}\right|^{2}}{\sin ^{2}(\alpha(q) / 2)}+\mathrm{o}_{2}\left(\sigma, \sigma^{*}, p\right)$.
Leading term of $\frac{1}{4}\left(H_{\text {red }}^{\rho}-\operatorname{dim}_{\rho}\right)$ matches spin Sutherland Hamiltonian $\mathcal{H}_{\text {Suth }}\left(e^{\mathrm{i} q}, p,[\widetilde{\xi}]\right)$.

Poisson brackets of functions of spin variables follow from

$$
\left\{\tilde{\xi}^{i}, \tilde{\xi}^{j}\right\}_{\mathcal{G}^{*}}(\tilde{\xi})=\left\langle\left[Y^{i}, Y^{j}\right], \tilde{\xi}\right\rangle, \quad\left\{\sigma^{i}, \sigma^{j}\right\}_{\mathrm{B}}\left(e^{\sigma}\right)=\left\langle\left[Y^{i}, Y^{j}\right], \sigma\right\rangle+\mathrm{o}(\sigma)
$$

where $\tilde{\xi}^{i}=\left\langle\tilde{\xi}, Y^{i}\right\rangle$ for a basis $\left\{Y^{i}\right\}$ of $\mathcal{T}^{\perp} \subset \mathcal{G}$ and similarly for σ.

Elements of $C_{I}(\mathcal{M})=\wedge_{R}^{*}\left(C^{\infty}(B)^{G}\right)$ descend to G-invariant functions of 'Lax matrix' $L\left(e^{\mathrm{i} q}, p, \sigma\right):=e^{p} b_{+} b_{+}^{\dagger} e^{p}$. In any representation, $L\left(e^{\mathrm{i} q}, p, \sigma\right)=1+2 p+\sum_{\alpha>0}\left(\frac{\sigma_{\alpha}}{e^{-\mathrm{i} \alpha(q)}-1} E_{\alpha}+\frac{\sigma_{\alpha}^{*}}{e^{\mathrm{i} \alpha(q)}-1} E_{-\alpha}\right)+\mathrm{o}\left(\sigma, \sigma^{*}, p\right)$.
This matches the Sutherland Lax matrix. In conclusion, our models are generalizations of the spin Sutherland models.

Explicit formulas for $G^{\mathbb{C}}=\operatorname{SL}(n, \mathbb{C})$: Now parametrize $b \in B$ by its matrix elements. With $b_{R}=e^{p} b$, we can solve the constraint

$$
Q^{-1} b Q=b S
$$

where $Q=\operatorname{diag}\left(Q_{1}, \ldots, Q_{n}\right) \in \mathbb{T}^{o}, S \in B_{+}$is the constrained 'spin' variable and b is an unknown upper triangular matrix with unit diagonal.

Using the notation $\mathcal{I}_{a, a+j}=\frac{1}{Q_{a+j} Q_{a}^{-1}-1}$, we have $b_{a, a+1}=\mathcal{I}_{a, a+1} S_{a, a+1}$, and, for $k=2, \ldots, n-a$, the matrix element $b_{a, a+k}$ equals

$$
\mathcal{I}_{a, a+k} S_{a, a+k}+\sum_{\substack{m=2, \ldots, k \\\left(i_{1}, \ldots, i_{m}\right) \in \mathbb{N} \\ i_{1}+\cdots+i_{m}=k}} \prod_{\alpha=1}^{m} \mathcal{I}_{a, a+i_{1}+\cdots+i_{\alpha}} S_{a+i_{1}+\cdots+i_{\alpha-1}, a+i_{1}+\cdots+i_{\alpha}}
$$

The reduction of $H=\operatorname{tr}\left(b_{R} b_{R}^{\dagger}\right)$ gives
$H_{\mathrm{red}}\left(e^{\mathrm{i} q}, p,[S]\right)=\sum_{a=1}^{n} e^{2 p_{a}}+\frac{1}{4} \sum_{a=1}^{n-1} e^{2 p_{a}} \sum_{k=1}^{n-a} \frac{\left|S_{a, a+k}\right|^{2}}{\sin ^{2}\left(\left(q_{a+k}-q_{a}\right) / 2\right)}+\mathrm{o}_{2}\left(S, S^{\dagger}\right)$.
The minimal dressing orbit of $\operatorname{SU}(n)$ (and a canonical transformation) results in the standard (spinless) real, trigonometric RS model.

Reduced equations of motion and solutions: Define $H \in C_{I}(\mathcal{M})$ by $H(K, S)=h\left(b_{R}\right)$, and denote $\left(d^{L} h\right)\left(b_{R}\right)=: \mathcal{V}(L)$ with $L:=b_{R} b_{R}^{\dagger}$. The Hamiltonian vector field of H on \mathcal{M} gives

$$
\dot{g}_{R}=\mathcal{V}(L) g_{R}, \quad \dot{b}_{R}=0, \quad \dot{S}=0 \quad\left(K=b_{L} g_{R}^{-1}=g_{L} b_{R}^{-1}\right)
$$

In the 'diagonal gauge' \mathcal{Z}, where $g_{R}=Q \in \mathbb{T}^{o}$, one recovers S from Q and $L=b_{R} b_{R}^{\dagger}$ via $S=b_{R}^{-1} Q^{-1} b_{R} Q$.

Decompose any $Y \in \mathcal{G}$ as $Y=Y_{\mathcal{T}}+Y_{\perp}$, using $\mathcal{G}=\mathcal{T}+\mathcal{T}^{\perp}$. Introduce the dynamical r-matrix $\mathcal{R}(Q)$ that acts as zero on the Cartan subalgebra $\mathcal{T}^{\mathbb{C}}$ of $\mathcal{G}^{\mathbb{C}}$ and acts on the span of the root vectors by

$$
\mathcal{R}(Q)=\frac{1}{2}\left(\mathrm{Ad}_{Q}+\mathrm{id}\right)\left(\mathrm{Ad}_{Q}-\mathrm{id}\right)^{-1}
$$

Proposition. The projection of the Hamiltonian vector field to the 'diagonal gauge' reads

$$
\dot{Q}=\mathcal{V}_{\mathcal{T}}(L) Q, \quad \dot{L}=\left[Y_{\mathcal{T}}+(\mathcal{R}(Q)+1 / 2) \mathcal{V}_{\perp}(L), L\right]
$$

where $Y_{\mathcal{T}}$ is arbitrary. The solutions are obtained by diagonalization:

$$
Q(t)=\eta(t) \exp (t \mathcal{V}(L(0))) Q(0) \eta(t)^{-1} \quad \text { with } \quad \eta(t) \in G
$$

and then $L(t)=\eta(t) L(0) \eta(t)^{-1}=n_{+}(t) e^{2 p(t)} n_{+}(t)^{\dagger}$, with $n_{+}(t) \in B_{+}$.

Constants of motion and integrability

Poisson algebra of integrals of free motion, $C_{J}(\mathcal{M})$, consists of all functions of b_{L}, b_{R} and S, and $C_{J}(\mathcal{M})^{G}$ suffices for degenerate integrability of reduced system. Particular G-invariant constants of motion are

$$
\mathcal{F}(K, S)=\operatorname{tr}_{\rho}\left(\mathcal{P}\left(b_{R} b_{R}^{\dagger}, g_{R}^{-1} b_{R} b_{R}^{\dagger} g_{R}\right)\right), \quad\left(g_{R}^{-1} b_{R} b_{R}^{\dagger} g_{R}=b_{L}^{-1}\left(b_{L}^{-1}\right)^{\dagger}\right)
$$

where \mathcal{P} is any non-commutative polynomial. In the 'diagonal gauge', these give

$$
\mathcal{F}_{\text {red }}(Q, L)=\operatorname{tr}_{\rho}\left(\mathcal{P}\left(L, Q^{-1} L Q\right)\right)
$$

Spectral parameter dependent Lax matrix generates special integrals

$$
\mathcal{L}(\lambda):=L+\lambda Q^{-1} L Q
$$

Reduced Hamiltonian vector field of $H=\wedge_{R}^{*}(h) \in C_{I}(\mathcal{M})$ implies

$$
\dot{\mathcal{L}}(\lambda)=\left[Y_{\mathcal{T}}+(\mathcal{R}(Q)+1 / 2) \mathcal{V}_{\perp}(L), \mathcal{L}(\lambda)\right]
$$

The reduced system is 'obviously' integrable in every reasonable sense.

Alternative construction: Poisson reduction

Instead of symplectic reduction, one may simply take the quotient of the unreduced phase space by the G-action.

In the $G=U(n)$ case, the functions on the quotient can be identified with \mathbb{T}^{n}-invariant (and Weyl-invariant) functions on the gauge slice

$$
\left\{(Q, L) \mid Q \in \mathbb{T}_{\text {reg }}^{n}, L \in \mathfrak{i u}(n)\right\}
$$

The respective quotients of $T^{*} \cup(n)$ and the Heisenberg double GL(n, \mathbb{C}) lead to the compatible Poisson brackets:

$$
\{f, h\}_{1}^{\text {red }}(Q, L)=\left\langle D_{1} f, d_{2} h\right\rangle-\left\langle D_{1} h, d_{2} f\right\rangle+\left\langle L,\left[d_{2} f, d_{2} h\right]_{\mathcal{R}(Q)}\right\rangle
$$

and

$$
\{f, h\}_{2}^{\text {red }}(Q, L)=\left\langle D_{1} f, L d_{2} h\right\rangle-\left\langle D_{1} h, L d_{2} f\right\rangle+2\left\langle L d_{2} f, \mathcal{R}(Q)\left(L d_{2} h\right)\right\rangle .
$$

The derivatives $D_{1} f \in \mathfrak{b}(n)_{0}$ and $d_{2} f \in \mathfrak{u}(n)$ are evaluated at (Q, L), and we use $[X, Y]_{\mathcal{R}(Q)}:=[\mathcal{R}(Q) X, Y]+[X, \mathcal{R}(Q) Y]$.

This gives the bi-Hamiltonian 'spin Ruijsenaars-Sutherland' hierarchy:

$$
\left\{f, h_{k}\right\}_{2}=\left\{f, h_{k+1}\right\}_{1} \quad \text { with } \quad h_{k}:=\frac{1}{k} \operatorname{tr}\left(L^{k}\right), k \in \mathbb{N} .
$$

Concluding remarks

1. Degenerate integrability can be proved (generically) relying on the G-equivariant map $\mathcal{J}:=\wedge_{L} \times \wedge_{L} \wedge_{R} \times \wedge_{L} \wedge_{R} \wedge_{\mathcal{O}_{B}}: \mathcal{M} \rightarrow B \times B \times B$.
2. Our trigonometric spin $R S$ systems are related by analytic continuation to hyperbolic spin RS systems derived by L.-C. Li [2006] based on dynamical Poisson groupoids [used only the variables (q, L)]. They can be viewed as real forms of holomorphic spin RS systems descending from the Heisenberg double of $G^{\mathbb{C}}$, studied by Reshetikhin [2016].
3. Our reduced Hamiltonian flows are automatically complete. This framework accommodates action-angle duals, too.
4. We have a generalization involving twisted conjugations of G.
5. Compactified trigonometric spin RS models should arise from reductions of quasi-Hamiltonian double $G \times G$.
6. Gibbons-Hermsen type spin RS models can be obtained reducing $\operatorname{GL}(n, \mathbb{C}) \times \mathbb{C}^{n} \times \cdots \times \mathbb{C}^{n}$ with constraint $\wedge_{L} \wedge_{R} \wedge_{1}^{\mathbb{C}^{n}} \wedge_{2}^{\mathbb{C}^{n}} \cdots \wedge_{k}^{\mathbb{C}^{n}}=e^{\gamma} \mathbf{1}_{n}$.
Currently studied with I. Marshall; related work by Chalykh and Fairon.

Some references

D. Kazhdan, B. Kostant and S. Sternberg: Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure Appl. Math. XXXI (1978) 481-507
I. Krichever and A. Zabrodin: Spin generalization of the Ruijsenaars-Schneider model, non-abelian 2D Toda chain and representations of Sklyanin algebra, Russian Math. Surveys 50 (1995) 1101-1150
L. F. and B.G. Pusztai: Spin Calogero models obtained from dynamical r-matrices and geodesic motion Nucl.Phys. B 734 (2006) 304-325
L.F. and C. Klimčík: Poisson-Lie generalization of the Kazhdan-Kostant-Sternberg reduction, Lett. Math. Phys. 87 (2009) 125-138
L.-C. Li: Poisson involutions, spin Calogero-Moser systems associated with symmetric Lie subalgebras and the symmetric space spin Ruijsenaars-Schneider models, Commun. Math. Phys. 265 (2006) 333-372
N. Reshetikhin: Degenerately integrable systems, J. Math. Sci. 213 (2016) 769-785
L.F.: Poisson-Lie analogues of spin Sutherland models, arXiv:1809.01529 [math-ph]
L.F.: Bi-Hamiltonian structure of a dynamical system introduced by Braden and Hone, arXiv:1901.03558 [math-ph]
L.F.: Reduction of a bi-Hamiltonian hierarchy on $T^{*} \mathrm{U}(n)$ to spin Ruijsenaars-Sutherland models, preprint in preparation
O. Chalykh and M. Fairon: On the Hamiltonian formulation of the trigonometric spin Ruijsenaars-Schneider system, arXiv:1811.08727 [math-ph]

