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The cell membrane
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The Helfrich energy functional (1973)

For a smooth surface S in the space we let

E (S) =

∫
S
κb(HS − H0)2 − κGKS dσ

HS is the mean curvature of S and KS is the Gauss curvature of S
κb > κG > 0 (Mathematics & Physics)
H0 is the spontaneous curvature

The shape of the cell membrane minimizes E

We notice that if S is a closed surface and H0 = 0 then E reduces (up to
constants) to the Willmore energy functional

W (S) =

∫
S
H2
S dσ
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A microscopic model (Peletier-Röger, ARMA 2009)

Probabilistic model:
In Ω ⊂ Rd : positions of heads X i

h, tails X
i
t and water particles X j

w , with
i = 1, . . . ,N` and j = 1 . . . ,Nw . Set X := Ω2N`+Nw and

X 3 X = (X 1
t , . . . ,X

N`
t ,X 1

h , . . . ,X
N`
h ,X 1

w , . . . ,X
Nw
w )

Probability density ψ on X :

ψ : X → [0, 1],

∫
ψ = 1

Volume fractions of heads/tails/water:

rt(ψ)(x), rh(ψ)(x), rw (ψ)(x)
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A microscopic model (Peletier-Röger, ARMA 2009)

Energy contributions:
Penalize the proximity of hydrophilic and hydrophobic grains:∫ ∫

(rw (ψ)(x) + rh(ψ)(x))rt(ψ)(y)ρ(x − y)dxdy

Incompressibility:

rt(ψ)(x) + rh(ψ)(x) + rw (ψ)(x) = 1

Interaction between head and tail:∫
X

N∑̀
i=1

|X i
h − X i

t |ψ(X ) dX
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The mesoscopic model formally derived (Peletier-Röger, ARMA 2009)

{x : v(x) = "�1}
{x : u(x) = "�1}

S

p

✓(p)

p

✓(p)

L+(p)

|L�(p)|

Energy arising from hydrophilic/hydrophobic behavior: area of the boundary
of the region occupied by uε

Energy arising from the covalent bond between heads and tails:
Monge-Kantorovich distance between uε and vε
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The behavior of the energy on ring structures
Partial Localization, Lipid Bilayers, and the Elastica Functional 483

Fig. 3. Ring structures; the pairs (u, v) on the right-hand figure indicate the values of u and
v in that region in the plane

We first do some direct optimization to reduce the number of degrees of freedom
in this geometry. For fixed inner radii r2 and r3 one may optimize F1 over variations
of r1 and r4 that respect the mass constraint

∫
u =

∫
v. Taking such optimal r1, r4,

the functional F1 can be computed explicitly in terms of r2 and r3 (see Appendix B).
The interesting quantity is actually the energy per unit mass, F1/M , as a function
of the mean radius R and the (half) width t of the structure,

M :=
∫

u, t := r4 − r1

2
, R := r4 + r1

2
.

Expanding F1/M around R = ∞ and t = 2, we find

F1

M
(R, t) = 2 + 1

4
(t − 2)2 + 1

4
R−2 + O(|t − 2|3 + R−3), (2.2)

see Appendix B.
Again we recognize a preference for structures of thickness t = 2; we now also

observe a penalization of the curvature in the term R−2/4. The main result of this
paper, indeed, is to identify this curvature penalization for structures of arbitrary
geometry, in the form of an elastica limit energy.

2.3. Rescaling and renormalization

In the previous sections we have seen that the functional Fε at ε = 1 has a
preference for structures of thickness 2. It is easy to see, by repeating the arguments
above, that this becomes a preference for thickness 2ε in the general case. For
instance, the development (2.2) generalizes to

Fε
M

(R, t) = 2 + 1
4
(t/ε − 2)2 + 1

4
ε2 R−2 + O

(
|t/ε − 2|3 + ε3 R−3

)
.

Energy ∼ 2M +
M

4

(
r4 − r1
2ε

− 2
)2

︸ ︷︷ ︸
partial localization

+
Mε2

(r4 + r1)2︸ ︷︷ ︸
bending energy

We thus study Gε(uε, vε) := (Energy− 2M)/ε2
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What happens as ε→ 0? A review on Γ-convergence
Approximate energies by means of simpler functionals with a stability property of
the minimum problems during the limit process. General framework:
Γ-convergence (De Giorgi, 1975). If (X , d) is a metric space,
Fε : (X , d)→ [−∞,+∞], Fε

Γ→ F as ε→ 0 if
∀u ∈ X , ∀uε → u:

F (u) ≤ lim inf
ε→0

Fε(uε)

∀u ∈ X , ∃uε → u:
lim sup
ε→0

Fε(uε) ≤ F (u)

Why does Γ-convergence work?

Fε
Γ→ F

Fε(uε) = min
X

Fε

uε → u0

⇒
{

F (u0) = min
X

F

min
X

Fε → min
X

F
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The main estimate (L-Peletier-Röger, JFPTA 2014)

Sε := interface between uε and vε (smooth enough), then

Gε(uε, vε) &
1
ε2

∫
Sε

(
1

θε · νε
− 1
)2

dσ

+

∫
Sε

1
4(θε · νε)3 (λ(1)

ε + λ(2)
ε )2 − 1

6
λ(1)
ε λ(2)

ε dσ

where:
νε is an orientation on Sε and θε · νε > 0 on Sε

λ
(1)
ε , λ

(2)
ε are the eigenvalues of the covariant derivative of θε

This estimate suggests that the limit energy should take the form∫
S

1
4
H2
S −

1
6
KS dσ
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Generalized surfaces (Geometric Measure Theory)
PDEs/Classical variational problem −→ weak notion of function
Geometric variational problem −→ weak notion of surface

smooth objects weak objects

functions distributions

surfaces currents, varifolds, . . .

By definition:
Currents: dual of the space of test differential forms (work fine with
oriented-area problems)
Varifolds: Radon measures on Rd×Grassmann manifold of all unoriented
hyperplanes (work fine with curvature problems)
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Intermezzo: are generalized surfaces really necessary?82 Geometric Measure Theory

Figure 8.1.1. A least-area disc need not be embedded.

Figure 8.1.2. The area-minimizing rectifiable current is embedded.

a singular set of Hausdorff dimension at most n − 8; if n = 8, singularities are
isolated points.

Regularity in higher codimension, for an m-dimensional area-minimizing rec-
tifiable current T in Rn, with m < n − 1, is much harder. Until 1983 it was known
only that the set of regular points, where spt T is a smooth embedded manifold,
was dense in spt T− spt ∂T [Federer, 5.3.16]. On the other hand, m-dimensional
complex analytic varieties, which are automatically area minimizing (6.3), can
have (m − 2)-dimensional singular sets. In a major advance, Almgren proved the
conclusive regularity theorem.

8.3 Theorem [Almgren 3, 1983] An m-dimensional, area-minimizing
rectifiable current in Rn is a smooth, embedded manifold on the interior except for
a singular set of Hausdorff dimension at most m − 2.

For example, a two-dimensional area-minimizing rectifiable current in Rn

has at worst a zero-dimensional interior singular set. In 1988, Sheldon Chang
(Figure 8.3.1) proved that these singularities must be isolated, “classical branch
points.”

The stronger regularity theory in codimension 1 comes from an elementary
reduction to the relatively easy case of surfaces of multiplicity 1. Indeed, a nesting
lemma decomposes an area-minimizing hypersurface into nested, multiplicity-1
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Intermezzo: are generalized surfaces really necessary?
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Working with currents: compactness but no curvature

Given a smooth surface S the canonical current associated to S is given by

〈S , ω〉 :=

∫
S
〈ω, η 〉 dσ, η orientation on S

Compactness holds true if we have a bound on the area
For our problem we have compactness of the currents Sε, but we do not have a
good notion of curvature of a current
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Working with varifolds: curvature but no compactness

Given a smooth surface S the canonical varifold associated to S is given by

〈VS , ψ〉 :=

∫
S
ψ(x ,TxS) dσ, ψ ∈ C 0

c (R3 × G (2, 3))

We have a good notion of a second fundamental form of a varifold (hence
good notions of mean curvature and gaussian curvature)
Compactness holds true if we have a bound on the second fundamental form

For our problem the bound
Gε(uε, vε) ≤ c

does not provide a bound on the second fundamental form of the varifold VSε

since θε is not orthogonal to Sε
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Working with Gauss graphs

Exploiting the estimate

c ≥ Gε(uε, vε) ≥
∫
Sε

1
4

(λ(1)
ε + λ(2)

ε )2 − 1
6
λ(1)
ε λ(2)

ε dσ

it is relatively easy to realize that the area of

Gε := {(p, θε(p)) : p ∈ Sε}

remains bounded. When ε ∼ 0 the area of Gε should be the area of the graph of
the Gauss map on S . In the area of the graph of the Gauss map are encoded
informations on the curvature of S : the idea is therefore to consider the currents

Gε
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Generalized Gauss graphs (Anzellotti-Serapioni-Tamanini, Indiana 1990)

If T is a Generalized Gauss graph, that is a limit, as a current, of Gauss graphs
of smooth surfaces, then:

T is an integer rectifiable current, i.e.

〈T , ω〉 =

∫
R
〈ω, η 〉β dσ, R rectifiable, η orientation on R ,

β : R → Z

Up to H2-negligible sets, R is a countable union of Gauss graphs of smooth
and orientable surfaces
There exists a stable notion of principal curvatures of T
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Back to compactness and liminf

The estimate

Gε(uε, vε) &
∫
Sε

1
4

(λ(1)
ε + λ(2)

ε )2 − 1
6
λ(1)
ε λ(2)

ε dσ

says that the area of Gε is bounded
When ε→ 0 the transport rays θε tend to be normal, therefore

TGε ⇀ Generalized Gauss graph

Thanks to the stability of principal curvatures it is possible to pass to the
limit in ∫

Sε

1
4

(λ(1)
ε + λ(2)

ε )2 − 1
6
λ(1)
ε λ(2)

ε dσ
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Further investigations

Complete the Γ-lim inf inequality
Biological structure of limits currents/varifolds
Higher codimension
Local minimizers of Fε (recent papers by Buttazzo et al.)
Try to minimize directly the Helfrich functional on generalized Gauss graphs
(with M.Morandotti)
Local minimizers/critical points of Helfrich?
. . . . . .
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Thank you!
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