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Lecture 4: Noether symmetries Il.

@ The Ostrogradsky's method for constructing Lagrangians for
equations of order greater than two.

@ Ghost-free quantization via symmetry preservation:
Pais—Uhlenbeck model and its “ghosts".

@ Ghost-free quantization via symmetry preservation: Higgs
model with a complex ghost pair.



Generating ghosts
Some simple linear equations of classical mechanics yield serious
problems when quantization a la Dirac is undertaken since states
with negative norm, commonly called ghosts, appear. We present a
“ghostbuster” based on the preservation of Lie symmetries of the
original classical equations.
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Karl Jansenn, Julius Kuti and Chuan Liu, The Higgs model with a

complex ghost pair, Phys. Lett. B 309 119-126 (1993)
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Higher order Lagrangians
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1801 — 1861

Mikhail Vasilevich Ostrogradsky, Mémoire sur le calcul des varia-

tions des intégrales multiples, Journal fiir die reine und angewandte
Mathematik 15 (1836) 332-354
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Ostrogradsky defines the momenta as
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the canonical coordinates according to
G =X Q=% ..., q=x"""
and finally the Hamiltonian function is

H=—L+pig2+ pags + ...+ pn-1gn + pox™



Pais-Uhlenbeck model
Using the prescription of Ostrogradsky:
L 2 ) ) B SRS
P% 2 2y 2 202 .2
H=-3v {? —(Q1+93) a5 + QleCh} + p192
a1 = q2 p1 = Yuq1
G2 =—— pa=— (2 +Q35) a2 — p1.

Carl M. Bender and Philip D. Mannheim, Giving up the ghost, J.

Phys. A: Math. Theor. 41 304018 (2008)

“Ghost states are quantum states having negative norm. If a
quantum theory has ghost states, it is fundamentally unacceptable
because the norm of a quantum state is interpreted as a probability,
and a negative probability is forbidden on physical grounds.”
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Phys. A: Math. Theor. 41 304018 (2008)
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below and all of the quantum states have positive norm.”
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and physical quantum theory, it is necessary to interpret the
Pais-Uhlenbeck Hamiltonian as a PT quantum theory.”

Maybe PT is not necessary MICN & Leach, JMathPhys 2009.
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Right Hamiltonian
That implies

lyut = (sz + z) Q (Q2Z + z) (le + z) Q (le + z)

We make the obvious transformations
q=7+MWz, q@=:+0z,
pr=7+032  pp=7+Q
and consequently we obtain the Hamiltonian
H = laut = 3lpT + P3 + gt + Q343
and the corresponding canonical equations
h=p, @=p, p=-Vaq, p=-Vae.

This is the right Hamiltonian for the quantization of the
fourth-order field-theoretic model of Pais-Uhlenbeck.



Preservation of symmetries
The application of the Legendre transformation gives

L= 3[df + 63 — (at + a3)]
and corresponding Lagrange equations
G = —Qfq, G2 = -
which admit a seven-dimensional Lie point symmetry algebra
M =0, T2=q0q, I3=cos(Qt)dq,, T4 =—sin(Qit)dq,
s = cos(2t)0g,, 6= —sin(2t)0q,, 7= q20q,

and five Noether point symmetries with five first integrals

M= h=3(Q¢ + B+ 4 + &)
s = bk =sin(Q1t)Q1g1 + cos(Q1t)G
M = Iy =cos(Q:1t)Q1q1 —sin(Q1t)¢1
s = = Sin(Qgt)ngz + COS(ta)flz
e = Is =cos(Qat)Q2q2 — sin(Q2t)3go.
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x(V1) — Higgs model
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1
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x(V) = Higgs model

—2M? (cos(2@) + %) x(V) — p4 (1 + 2,\/%22 cos(2@)> X" — M*w?x

1
L= W( — 2¢c0s(20)M2w?x"? — 2 cos(20)M?x""? — M*w?x?
_M4X/2 - WZX//Z + X///2)
1) = — (@2 + w3 +w2)x) — (WA + wwd + wiwd)x — wiwdwdx

L= (52— (3 +e -+ x4 (whud+udul +udud X2 —wlududx?
Eight-dimensional Lie point symmetry algebra:
M = sin(w1t)0x, M2 = cos(wit)Ox, M3 = sin(w3t)dx, 4 = cos(wst)0x,
s = sin(wat)0x, M6 = cos(wat)dx, 7 = x0x, g = O,

and seven Noether point symmetries with seven first integrals:

M1,M2,13,14,15,T6, g



Right Hamiltonian
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Right Hamiltonian

Lut = 3(Intf + Int3 + Int3 + Intg + Intg + Intd)

that implies the obvious transformations

g1 = wiwix + (w3 + w2)x" 4 x(¥)
G = wiwix 4 (wW? + w?)x" + x(V)
g3 = wiwix + (w? + w3)x" + x(V)
p1 = Wiwix' + (w? + wd)x" 4+ x()
P2 = w?wix' + (W2 + w)x" + x(v)
p3 = w2wix’ + (w? + w3)x" + x(¥)

and consequently we obtain the Hamiltonian
1
H = S(p7 +p3 + p3 +wiat + w33 +w3a3)

This is the right Hamiltonian for the quantization of the
sixth-order Higgs model.



Preservation of symmetries
The application of the Legendre transformation gives
L=30Gi + 4+ & — (wigh +widh +wiad)]
and corresponding Lagrange equations
G = —wiqu, G2 = —w5q, G3 = —w3qs

which admit a ten-dimensional Lie point symmetry algebra and
seven Noether point symmetries with seven first integrals.

A =08, No=q0dq, N3 =cos(wit)dg, Ns=—sin(wit)dg,,
Ns = q26q2, Ne = COS(wzt)8q2, N = — sin(wgt)aqz,
Ng = C[38q3, Ng = COS(W3t)8q3, N = — sin(wgt)8q3.

More details in
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Eliminating the ghosts

WHO YA GONNA CALL?

’!G

GH%STBUSTERS

Find the Lie symmetries of the Lagrange equations

Find the Noether symmetries and the corresponding first
integrals

Construct the Hamiltonian from the first integrals

Quantize preserving the symmetries
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WHO ARE THE TRUE GHOSTBUSTERS?

Sophus Lie and Emmy Noether



