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Lecture 5: Heir-equations for evolution systems

Classical Lie symmetries of partial differential equations: an
example.

Nonclassical symmetries of partial differential equations: an
example.

Iteration of the nonclassical symmetry method: heir-equations.

Conditional Lie-Bäcklund symmetries and heir-equations.

Nonclassical symmetries as special solutions of heir-equations.

More symmetry solutions than expected with heir-equations.



Classical symmetries

Evolution equation:

ut = H

(
t, x , u, ux , uxx , . . . , uxx · · ·︸ ︷︷ ︸

n

)

Lie symmetry operator:

Γ = V1(t, x , u) ∂t + V2(t, x , u) ∂x + G (t, x , u) ∂u

Determining equation:

Γ
n

(ut −H)|
| {ut−H=0}

= 0

Invariant surface:

V1 ut + V2 ux − G = 0



An example

MCN, Atti Sem. Mat. Fis. Univ. Modena (1984)





Nonclassical symmetries
Introduced 50 years ago in a seminal paper [Bluman & Cole, J.
Math. Mech., 1969] to obtain new exact solutions of the linear
heat equation.
Determining equation:

Γ
n

(ut −H)|
| {

ut − H = 0
V1ut + V2ux − G = 0

} = 0

Nonclassical symmetries also called Q-conditional symmetries of
second-type in Fushchych et al, 1993, or reduction operators in
Popovych, J. Phys. A: Math. Theor., 2008.
Also a particular instance of the more general differential
constraint method that, as stated in Kruglikov, Acta Appl. Math.
2008 dates back at least to the time of Lagrange... and was
introduced into practice by Yanenko in 1961. The method was set
forth in details in Yanenko’s monograph Sidorov, Shapeev,
Yanenko, 1984 that was not published until after his death.
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Iterating NCSM
MCN, Phys. D (1994)

V1(t, x , u)ut + V2(t, x , u)ux = G (t, x , u)

V1 = 0, V2 = 1⇒ ux = G (t, x , u)⇒ G − equation

ξ1(t, x , u,G )Gt + ξ2(t, x , u,G )Gx + ξ3(t, x , u,G )Gu = η(t, x , u,G )

ξ1 = 0, ξ2 = 1, ξ3 = G ⇒ Gx + GGu = uxx = η(t, x , u,G )⇓
η − equation
ηx + Gηu + ηηG = uxxx = Ω(t, x , u,G , η)
⇓

Ω− equation
Ωx + GΩu + ΩΩG + ΩΩη = uxxxx = ρ(t, x , u,G , η,Ω)
⇓

ρ− equation
...

Heir − equations



Heir-equations

Definition: Hierarchy of equations which admit the same Lie
symmetry algebra (heirs) as the original one.
Each equation has one more additional independent variable than
the previous equation in the hierarchy, and thus
WE CAN GET MORE SOLUTIONS FROM THE SAME
SYMMETRY.

MCN, Physica D 78 (1994),
MCN, J. Phys. A: Math. Gen. 29 (1996)

CLASSICAL vs. NONCLASSICAL

BOTH SYMMETRIES ARE PARTICULAR SOLUTIONS OF THE
SAME HEIR-EQUATION.

MCN, J. Math. Anal. Appl. 279 (2003)



Outline of the method

Second Order:
ut = uxx + H1(t, x , u, ux)

Invariant surface condition:

V1(t, x , u)ut + V2(t, x , u)ux = F (t, x , u)

V1 = 1⇒ ut + V2(t, x , u)ux = F (t, x , u)

uxx + H1(t, x , u, ux) + V2(t, x , u)ux = F (t, x , u)

i.e. η = F (t, x , u)− V2(t, x , u)G − H1(t, x , u,G ) (∗)

Generate the η-equation and search for the particular solution (∗).
Example:

ut = uxx + uux

yields
η = F (t, x , u)− V2(t, x , u)G − uG .



Blow-up solutions
We recall Galaktionov’s equation Diff. Int. Eqns., 1990:

ut = uxx + u2x + u2. (1)

Its G -equation is:

2GGxu +G 2Guu +G 2Gu−u2Gu−Gt +Gxx +2GGx +2uG = 0. (2)

Its η-equation is:

2ηηxG + 2GηηuG + η2ηGG − 2uGηG + 2Gηxu + ηxx

+2Gηx − ηt + G 2ηuu + G 2ηu − u2ηu + 2η2 + 2uη + 2G 2 = 0. (3)

Lie symmetries: X1 = ∂t , and X2 = ∂x . Search for t-independent
invariant solutions of (3): η = η(x , u,G ). A particular case is
ηu = 0⇒ η = L(x ,G ). Substituting this expression for η into (3)
leads to L = f (x)G with

f (x) =
−c1 sin x + c2 cos x

c2 sin x + c1 cos x
. (4)



If we let c1 = 0, then:
η = cot(x)G , (5)

which is just the differential constraint for (1) given in Olver, Proc.
R. Soc. Lond. A, 1994 i.e.:

uxx = cot(x)ux . (6)

Integrating (6) with respect to x gives raise to:

u = w1(t) cos(x) + w2(t). (7)

Finally, the substitution of (7) into (1) leads to:

ẇ1 = w2
1 + w2

2 , ẇ2 = 2w1w2 − w2 (8)

This is the solution derived by Galaktionov for (1).



A class of reaction-diffusion equations ut = uxx + cux + R(u, x)
M.S.Hashemi and MCN, J. Nonlinear Math. Phys. 20 (2013)

ut = uxx + cux −
1

2
x2u3 + 3u2 +

1

2
c2u

u(t, x) =
c2c1e

c2t+ cx
2 − c2(1 + cx)e

−cx
2

c2e
−c2t

4 + c1(cx − 2)ec
2t+ cx

2 + (10 + 5cx + c2x2)e
−cx
2

[c = 0.1, c1 = 2/105, c2 = 0]
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ut = uxx + cux −
1

2
ecxu3 +

c2

4
u + e

cx
2

u(t, x) =
3
√

2

2
(
−R2(t) sin

(
3
√

2
√

3x/4
)

+ cos
(

3
√

2
√

3x/4
))

ecx/2
×

×
[
+R2(t)

(
sin
(

3
√

2
√

3x/4
)
−
√

3 cos
(

3
√

2
√

3x/4
))

−
√

3 sin
(

3
√

2
√

3x/4
)
− cos

(
3
√

2
√

3x/4
)]

R2(t) = − tan
(
33/22−7/3t

)

[c = 2]
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Heir eqs for systems of PDE
MCN & B.Hajek, 2019

Outline of the method

Second Order:
ut = H(t, x ,u,ux ,uxx)

Invariant surface conditions:

V1(t, x ,u)(uj)t + V2(t, x ,u)(uj)x = Fj(t, x ,u), (j = 1, . . . , n)

V1 = 1⇒ (uj)t + V2(t, x ,u)(uj)x = Fj(t, x ,u)

(uj)xx + H̃j(t, x ,u,ux) + V2(t, x ,u)(uj)x = Fj(t, x ,u)

i.e. ηj = Fj(t, x ,u)− V2(t, x ,u)Gj − H̃j(t, x ,u,G) (∗)

Generate the ηj -equation and search for the particular solution (∗).



Example of a system of two diffusion eqs
King, Proc.Roy.Soc.London A, 1990

∂u1
∂t

= u2
∂2u1
∂x2

− u1
∂2u2
∂x2

,

∂u2
∂t

=
∂2u1
∂x2

.

We generated the Gi and the ηi eqs, and then searched for the
following particular solutions of the ηi eqs:

η1 = F2(t, x , u1, u2)− V2(t, x , u1, u2)G2,

η2 =
1

u1
(u2η1 − F1(t, x , u1, u2) + V2(t, x , u1, u2)G1) .

We obtained the classical symmetries

η1 ≡
∂2u1
∂x2

= a2u1 + a1, η2 ≡
∂2u2
∂x2

= u2a2 − a3,

and also a nonclassical one...



Nonclassical symmetries:

η1 = F2(t, x , u1, u2)− V2(t, x , u1, u2)G2,

η2 =
1

u1
(u2η1 − F1(t, x , u1, u2) + V2(t, x , u1, u2)G1) .

with

V2 = 0, F1 = −(a3 exp[(t + a4)/a3]− 2)u1
(a3 exp[(t + a4)/a3] + 2)a3

,

F2 =
a1u1 (a3 exp[(t + a4)/a3] + 2)2 + 4u2 exp[(t + a4)/a3]

a23 exp[2(t + a4)/a3]− 4
.

and consequently a fourth-order equation in u1 with respect to x
is obtained.
More details in MCN & B.Hajek, 2019.



The Wigner medal

The purpose of the medal shall be to recognize outstanding
contributions to the understanding of physics through Group
Theory.

In 1947-1949 Marcos Moshinsky was studying at Princeton under
the supervision of Eugene Paul Wigner.
In 1978 Wigner and Bargmann were the first recipients of the
Wigner medal.
Twenty years later, in 1998, Marcos Moshinsky was awarded
the Wigner medal.
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The effectiveness of Lie symmetries

Eugene P. Wigner, The unreasonable effectiveness of Mathematics
in the Natural Sciences,Comm. Pure Appl. Math 13 (1960) 1-14

Paraphrasing Eugene Paul Wigner:

Lie symmetries turn up in entirely unexpected
connection

Lie symmetries permit unexpectedly accurate description
of the phenomena in this connection

A theory formulated in terms of Lie symmetries maybe
uniquely appropriate.
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Marcos Moshinsky, SIMETŔIA EN LA NATURALEZA,
Conferencia Inaugural En El Colegio Nacional (1972)

Para ilustrar las diferencias entre simetŕıa obvia o trivial en la
naturaleza y simetŕıa profunda, nada hay más efectivo que el
uso del lenguaje que más completamente describe al mundo
que nos rodea, el de las matemáticas.

Marcos Moshinsky (1999) Vine, vi y comprend́ı
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