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Optimal Control for Discrete- Time Fractional-Order
Systems

Fractional calculus(FC) began to engage mathematicians�interest in
the 17th century as evidenced by a letter of Leibniz to L�Hôspital,
dated 30th September 1695, which talks about the possibility of
non-integer order di¤erentiation. Later on, famous mathematicians as
Fourier, Euler and Laplace contributed to the foundation of this new
branch of mathematics with various concepts and results.

Nowadays, the most popular de�nitions of the non-integer order
integral or derivative are the Riemann-Liouville, Caputo and
Grunwald-Letnikov de�nitions. For a historical survey and the current
state of the art, the reader is referred to [3], [4], [5],[6], [7] and the
references therein.
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FC �nds use in di¤erent �elds of science and engineering including the
electrochemistry, electromagnetism, biophysics, quantum mechanics,
radiation physics, statistics or control theory (see [6], [8], [4], [9]).
Such an example comes from the �eld of autonomous guided vehicles,
which lateral control seems to be improved by using fractional
adaptation schemes [10]. Also, partial di¤erential equations of
fractional order were applied to model the wave propagation in
viscoelastic media or the dissipation in seismology or in metallurgy
[11].
The optimal control theory was intensively developed during the last
century for deterministic systems de�ned by integer-order derivatives,
in both continuous- and discrete- time cases [12]. Since many
real-world phenomena are a¤ected by random factors that exercised a
decisive in�uence on the processes behavior, stochastic optimal
control theory had a similar evolution in the recent decades (see [13],
[14], [15], [16] and the references therein). However, only a few
papers address optimal control problems for fractional systems (see
e.g. [17], [18], [19], [20], [21], [22]) and fewer consider stochastic
fractional systems [23], [24].
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Finite-horizon LQ optimal control problem

In what follows we shall discuss a �nite-horizon LQ optimal control
problem for stochastic discrete-time LFSs de�ned by the
Grunwald-Letnikov fractional derivative. As far as we know, this
subject seems to be new for discrete-time LFSs with in�nite
Markovian jumps. The case of discrete-time LFSs a¤ected by
multiplicative, independent random perturbations was considered
recently in [*]Trujillo, J. J., & Ungureanu, V. M. (2018). Optimal
control of discrete-time linear fractional-order systems with
multiplicative noise. International Journal of Control, 91(1), 57-69].
A determinstic case was considered previously in A. Dzielinski,P. M.
Czyronis, Dynamic Programming for Fractional Discrete-time
Systems, 19 th World Congress of IFAC,19(1)(2014).

Following [*], we have used an equivalent linear expanded-state
model of the discrete-time LFS with jumps and we have rewritten the
quadratic cost functional accordingly. Then the original optimal
control problem reduces to a LQ optimal control problem for linear
stochastic systems with Markovian jumps. The solution is obtained by
using a dynamic programming technique.
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Why stochastic systems with Markovian jumps?

Stochastic discrete-time systems with Markovian switching can model
many physical systems which may experience abrupt changes in their
dynamics. Among them we mention the manufacturing systems, the power
systems, the telecommunication systems e.t.c. All these systems su¤er
frequent unpredictable structural changes caused by failures or repairs,
connections or disconnections of the subsystems [1].
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Example
A model where the state vector xk is computed by switching (according to
a Markov law) between the following LFSs

State i = 1

∆[α]h xk+1 =

�
�1/2 1
0 �1/3

�
xk +

�
1/2 0
0 1/2

�
uk , k 2 N

State i = 2

∆[α]h xk+1 =

�
�1/2 1
0 �1/1

�
xk +

�
1/3 0
0 1/3

�
uk , k 2 N

x0 = x 2 Rd ,

Such a model could describe a special solar thermal receiver system where
the state space Z = f1, 2g could represent an atmospheric condition
where i = 1 means "sunny", i = 2 means "cloudy".
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Stochastic systems with Markovian jumps

frkgk2N is a homogeneous Markov chain on a probability space
(Ω,F ,P) , with the state space Z � Z (�nite or in�nite) and Gk is
the σ� algebra generated by fri , 0 � i � k � 1g, k 2 N�. Consider
the LFS with control

∆[α]xk+1 = Ak (rk )xk +Bk (rk )uk , k 2 N (FOS)

x0 = x 2 Rd , (Init cond FOS)

yk+1 = Ck (rk ) xk (observable output)

where the control sequence u = fukgk2N (the input) belongs to a
class of admissible controls U a (U a = fu = fukgk2N

juk 2 L2 (Ω,Rm) is Gk -measurable for all k 2 Ng) and the operator

∆[α]xk+1 =
1
hα

k+1

∑
j=0
(�1)j

�
α
j

�
xk+1�j , h > 0

is the one used for the de�nition of the Grünwald-Letnikov fractional

order derivative. Here
�

α
k

�
= Γ(α+1)

Γ(k+1)Γ(α�k+1) .
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Optimal control problem

Let x 2 Rd , i 2 Z and N 2 N be �xed. Our optimal control problem
O is to minimize the cost functional

Ix ,N ,i (u) = (cost funct)
N�1
∑
n=0

E
h�
kCn (rn) xnk2 + < Kn (rn) un, un >

�
jr0=i

i
+

E [< SxN , xN > jr0=i ]

subject to (FOS)-(Init cond FOS), over the class U a of admissible
controls.

Here S � δIRm ,Kn (i) � δnIRm ,for all i 2 Z and E [ξjη = x ]
denotes the conditional expectation on the event η = x of an
integrable, real-valued random variable ξ de�ned on a probability
space (Ω,F ,P) .

VM Ungureanu ( Constantin Brancusi Univ. ) Optimal control for discrete -time FOS 10 / 22



A linear expanded-state model- The coe¢ cients

For all j 2 N, cj := (�1)j
�

α
j + 1

�
, A0k (i) = h

αAk (i) + αIRd ,

Bk (i) = hαBk (i),i 2 Z and Ak (i) 2 L
��

Rd
�N�

,

Bk (i)2L
�

Rm ,
�
Rd
�N�

, k 2 N are linear and bounded operators de�ned
by

Ak (i) =

0BBBB@
A0k (i) c1IRd . cN�1IRd

IRd 0 . 0
. IRd . .
. . . 0
0 . IRd 0

1CCCCA ,Bk (i) =
0BB@
Bk (i)
0
.
0

1CCA .
(1)

Also,

Ck (i) :
�

Rd
�N
! Rp , Ck (i) (v0, v1, ...) = Ck (i) (v0) , k = 0, ..,N � 1

S : (Rd )N ! (Rd )N ,S (v0, ..., vN�1) = (Sv0, 0, ..., 0) .
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A linear expanded-state model-The equations

XTk =
�
xk , xk�1, ..., x0, 0, .., 0

N

�
and

Xk+1 = Ak (rk )Xk + Bk (rk ) uk , (2)

X0 = (x0, 0, 0...) 2 l2Rd , x0 = x 2 Rd (3)

Ix ,N ,i (u) =
N�1
∑
n=0

E [(hC�k (rk ) Ck (rk )Xk ,Xk i+ hKk (rk ) uk , uk i) jr0=i ]

+E [(h(A�N�1 (rN�1) SAN�1 (rN�1))XN�1,XN�1i
+2 h(A�N�1 (rN�1) SBN�1 (rN�1)) uN�1,XN�1i+ (4)

h(B�N�1 (rN�1) SBN�1 (rN�1)) uN�1, uN�1i)jr0=i ].
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Backward discrete-time Riccati equation of control on
ordered Banach spaces

H is a Hilber space, L (H) denotes the Banach space of all linear and
bounded operators A : H ! H and S (H) is the Banach subspace of
L(H) formed by all self-adjoint operators. lZ

S(Rd )
= fR = fR (i) 2

S (H) , i 2 Zg, kRkZ = supi2Z kR (i)k < ∞g -Banach orderd space
E :lZ

S(Rd )
! lZ

S(Rd )
,E (R) (i) = ∑

j2Z
qijR (j) , qij =

P (rn+1 = j jrn=i )(transition matrix of the Markov chain)
for all i 2 Z , k 2 f0, 1, ..,N � 1g

Pk (i) = A�k (i)E (Pk+1) (i)Ak (i) + C�k (i) Ck (i) (Riccati Syst)

�[A�k (i)E (Pk+1) (i)Bk (i)] � [Kk (i) + B�k (i)E (Pk+1) (i)Bk (i)]�1�
[B�k (i)E (Pk+1) (i)Ak (i)],

PN (i) = S (Final cond)

VM Ungureanu ( Constantin Brancusi Univ. ) Optimal control for discrete -time FOS 13 / 22



Cost functional

Theorem
The cost functional (4) can be equivalently rewritten as

Ix ,N ,i (u) = E [hP0 (i)X0,X0i jr0=i ] + (5)

+
N�1
∑
n=0

E
�[Kn (Pn+1) (rn)]1/2 [Wn (rn)Xn � un ]

2 jr0=i� ,
where, for all R 2 lZ

S(Rd )
, i 2 Z , n 2 f0, 1, ..,N � 1g,

Kn (R) (i) = Kn (i) + B�n (i)E (R) (i)Bn (i) ,
Wn (i) = � [Kn (Pn+1) (i)]�1 � [B�n (i)E (Pn+1) (i)An (i)].
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Main result

Theorem
Let fPngn=0,..,N�1 be the unique solution of the generalized Riccati
equation of control and let Wn, n = 0, ..,N � 1 be de�ned as above. The
control sequence

eu = feu0 = W0X0, ..., eun = WnXn, ..., euN�1 = WN�1XN�1g (6)

minimizes the cost functional Ix ,N ,i (u) and the optimal cost is

min
u2U a0,N�1

Ix ,N ,i (u) = E [hP0X0,X0i jr0=i ] . (7)
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Example
Consider a time-invariant, �nite-dimensional version of the LFS with

control where α = 1
2 , h = 2, d = 2,m = 2, x0 =

�
1
2

�
,Z = f1, 2g and

Ak (1) =
�
�1/2 1
0 �1/3

�
,Ak (2) =

�
�1/2 1
0 �1/1

�
,

Q =
�
1/2 1/2
3/4 1/4

�
(Transition matrix of the markov

process),Kk (1) =
�
2 1
1 2

�
,

Kk (2) =
�
3 2
2 3

�
, S =

�
2 0
0 2

�
and

Bk (i) =
�
1/ (i + 1) 0

0 1/ (i + 1)

�
,

Ck (i) = (i + 1)
2

0@ 1 0
0 1
0 0

1A , for i = 1, 2.
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Example

In this example, the state space of the Markon chain is Z = f1, 2g and
the state vector xk will be computed by switching (according to the
Markov law) between the following two deterministic LFSs

∆[α]xk+1 =

�
�1/2 1
0 �1/3

�
xk +

�
1/2 0
0 1/2

�
uk , k 2 N

x0 = x 2 Rd ,

∆[α]xk+1 =

�
�1/2 1
0 �1/1

�
xk +

�
1/3 0
0 1/3

�
uk , k 2 N

x0 = x 2 Rd ,

Our model could describe a special solar thermal receiver system where the
state space Z = f1, 2g of the Markov chain could represent an
atmospheric condition where i = 1 means "sunny", i = 2 means "cloudy".

VM Ungureanu ( Constantin Brancusi Univ. ) Optimal control for discrete -time FOS 17 / 22



Example

P0 (i) is a de�ned by a (2�N)� (2�N) symmetric matrix. The
relevant values of P0 (i) correspond to the �rst 2 nonzero elements of

X0 =
�
x0, 0, .., 0

N�1

�
,x0 2 R2 because

minu2U a0,N�1 Ix ,N ,i (u) = E [hP0X0,X0i jr0=i ] .

P0 (i)
not
= P (0, i) =

0BBBBBBBB@

P11 (0, i) P12 (0, i) . . P1(2N ) (0, i)
P12 (0, i) P22 (0, i) . . P2(2N ) (0, i)

. . . . .

. .

. .

. .
P1(2N ) (0, i) P2(2N ) (0, i)

1CCCCCCCCA
By implementing in Matlab the above results concerning the Riccati
equation of control and the optimal cost, we get the following numerical
results.
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Conclusions and further research

This paper provides a new method ( based on the dynamic programming
approach) for solving the LQ optimal control problem O. It consists in a
reformulation of the problem for an associated linear non-fractional system
(2)-(3), de�ned on spaces of higher dimensions. The computer program
implementing this method is simple and fast.The linear approach opens
the way of solving an in�nte horizon LQ optimal control problem for LFSs.

Further research

in�nite horizon LQ optimal control problem for LFSs
asympototic behavior of the generalized Riccati equation with control
stabilizability, detectability and observability properties of the LFS
(other than the exponential stability, because the system cannot be
exponentially stabilized).

Thank you!!
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